Abstract

Sampling methods are powerful tools for structural reliability analysis with complex failure domains due to their stability and accuracy. One of the most frequently used sampling methods is the importance sampling (IS) method, which can markedly reduce the sampling variance and computational costs. The pivotal problem in IS method is the determination of the IS probability density function (ISPDF), which influences the accuracy and efficiency of reliability analysis greatly. This study proposes an effective method for constructing the ISPDF, combining the hybrid Monte Carlo algorithm (HMC) with the Gaussian mixture model. The HMC is superior to the common Markov chain Monte Carlo algorithm in convergence, which is helpful in improving sampling efficiency. Our ISPDF is generated adaptively and does not require the most probable failure point (MPFP); therefore, it can also work well for multiple MPFPs and high-nonlinear problems. To release the computational burden further, the performance function is replaced with the Kriging model, and the well-known U criterion is used for its refinement. In the proposed method, the process of the refinement of the Kriging model is coupled with the HMC sampling for constructing the ISPDF, which is the difference between some common methods; thus, no samples are vain. We verify the proposed method using three classical numerical examples and one practical engineering problem. Results show that the proposed method is accurate and superior to common IS methods in efficiency.

References

1.
Meng
,
Z.
,
Pu
,
Y. X.
, and
Zhou
,
H. L.
,
2018
, “
Adaptive Stability Transformation Method of Chaos Control for First Order Reliability Method
,”
Eng. Comput.
,
34
(
4
), pp.
671
683
.
2.
Meng
,
Z.
, and
Zhou
,
H. L.
,
2018
, “
New Target Performance Approach for a Super Parametric Convex Model of Non-Probabilistic Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
644
662
.
3.
Li
,
G.
,
Wang
,
Y. X.
,
Zeng
,
Y.
, and
He
,
W. X.
,
2022
, “
A New Maximum Entropy Method for Estimation of Multimodal Probability Density Function
,”
Appl. Math. Model.
,
102
, pp.
137
152
.
4.
Wu
,
J. H.
,
Zhang
,
D. Q.
,
Liu
,
J.
, and
Han
,
X.
,
2019
, “
A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots
,”
IEEE Trans. Reliab.
,
69
(
2
), pp.
699
714
.
5.
Zhang
,
X. F.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Saf.
,
43
, pp.
28
40
.
6.
Zhang
,
D. Q.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
7.
Meng
,
Z.
,
Zhang
,
Z. H.
,
Zhang
,
D. Q.
, and
Yang
,
D. X.
,
2019
, “
An Active Learning Method Combining Kriging and Accelerated Chaotic Single Loop Approach (AK-ACSLA) for Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
357
, p.
112570
.
8.
Zhang
,
X. F.
,
Wang
,
L.
, and
Sørensen
,
J. D.
,
2019
, “
REIF: A Novel Active-Learning Function Toward Adaptive Kriging Surrogate Models for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
440
454
.
9.
Zhang
,
X. F.
,
Wang
,
L.
, and
Sørensen
,
J. D.
,
2020
, “
AKOIS: An Adaptive Kriging Oriented Importance Sampling Method for Structural System Reliability Analysis
,”
Struct. Saf.
,
82
, p.
101876
.
10.
Zhang
,
X. F.
,
Pandey
,
M. D.
, and
Luo
,
H. Y.
,
2021
, “
Structural Uncertainty Analysis With the Multiplicative Dimensional Reduction–Based Polynomial Chaos Expansion Approach
,”
Struct. Multidiscipl. Optim.
,
64
(
4
), pp.
2409
2427
.
11.
He
,
W. X.
,
Zeng
,
Y.
, and
Li
,
G.
,
2020
, “
An Adaptive Polynomial Chaos Expansion for High-Dimensional Reliability Analysis
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
2051
2067
.
12.
Pan
,
Q. J.
,
Zhang
,
R. F.
,
Ye
,
X. Y.
, and
Li
,
Z. W.
,
2021
, “
An Efficient Method Combining Polynomial-Chaos Kriging and Adaptive Radial-Based Importance Sampling for Reliability Analysis
,”
Comput. Geotech.
,
140
, p.
104434
.
13.
Yun
,
W. Y.
,
Lu
,
Z. Z.
, and
Jiang
,
X.
,
2018
, “
A Modified Importance Sampling Method for Structural Reliability and Its Global Reliability Sensitivity Analysis
,”
Struct. Multidiscipl. Optim.
,
57
(
4
), pp.
1625
1641
.
14.
Yuan
,
X. K.
,
Lu
,
Z. Z.
,
Zhou
,
C. C.
, and
Yue
,
Z. F.
,
2013
, “
A Novel Adaptive Importance Sampling Algorithm Based on Markov Chain and Low-Discrepancy Sequence
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
253
261
.
15.
Yang
,
X. F.
, and
Cheng
,
X.
,
2020
, “
Active Learning Method Combining Kriging Model and Multimodal-Optimization-Based Importance Sampling for the Estimation of Small Failure Probability
,”
Int. J. Numer. Methods Eng.
,
121
(
21
), pp.
4843
4864
.
16.
Zhu
,
X. M.
,
Lu
,
Z. Z.
, and
Yun
,
W. Y.
,
2020
, “
An Efficient Method for Estimating Failure Probability of the Structure With Multiple Implicit Failure Domains by Combining Meta-IS With IS-AK
,”
Reliab. Eng. Syst. Saf.
,
193
, p.
106644
.
17.
Li
,
G.
,
Li
,
B.
, and
Hu
,
H.
,
2018
, “
A Novel First–Order Reliability Method Based on Performance Measure Approach for Highly Nonlinear Problems
,”
Struct. Multidiscipl. Optim.
,
57
(
4
), pp.
1593
1610
.
18.
Au
,
S. K.
, and
Beck
,
J. L.
,
1999
, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Saf.
,
21
(
2
), pp.
135
158
.
19.
Dai
,
H. Z.
,
Zhang
,
H.
, and
Wang
,
W.
,
2016
, “
A New Maximum Entropy-Based Importance Sampling for Reliability Analysis
,”
Struct. Saf.
,
63
, pp.
71
80
.
20.
Anzai
,
Y.
,
2012
,
Pattern Recognition and Machine Learning
,
Elsevier
,
New York
.
21.
Duane
,
S.
,
Kennedy
,
A. D.
,
Pendleton
,
B. J.
, and
Roweth
,
D.
,
1987
, “
Hybrid Monte Carlo
,”
Phys. Lett. B
,
195
(
2
), pp.
216
222
.
22.
Monnahan
,
C. C.
,
Thorson
,
J. T.
, and
Branch
,
T. A.
,
2017
, “
Faster Estimation of Bayesian Models in Ecology Using Hamiltonian Monte Carlo
,”
Methods Ecol. Evol.
,
8
(
3
), pp.
339
348
.
23.
Baisthakur
,
S.
, and
Chakraborty
,
A.
,
2020
, “
Modified Hamiltonian Monte Carlo-Based Bayesian Finite Element Model Updating of Steel Truss Bridge
,”
Struct. Control Health Monit.
,
27
(
8
), p.
e2556
.
24.
Wang
,
Z. Q.
,
Broccardo
,
M.
, and
Song
,
J. H.
,
2019
, “
Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability Analysis
,”
Struct. Saf.
,
76
, pp.
51
67
.
25.
Chen
,
W. M.
,
Wang
,
Z. Q.
,
Broccardo
,
M.
, and
Song
,
J. H.
,
2022
, “
Riemannian Manifold Hamiltonian Monte Carlo Based Subset Simulation for Reliability Analysis in Non-Gaussian Space
,”
Struct. Saf.
,
94
, p.
102134
.
26.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
27.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
232
240
.
28.
Zhao
,
H. L.
,
Yue
,
Z. F.
,
Liu
,
Y. S.
,
Gao
,
Z. Z.
, and
Zhang
,
Y. S.
,
2015
, “
An Efficient Reliability Method Combining Adaptive Importance Sampling and Kriging Metamodel
,”
Appl. Math. Model.
,
39
(
7
), pp.
1853
1866
.
29.
Ling
,
C. Y.
,
Lu
,
Z. Z.
, and
Zhu
,
X. M.
,
2019
, “
Efficient Methods by Active Learning Kriging Coupled With Variance Reduction Based Sampling Methods for Time-Dependent Failure Probability
,”
Reliab. Eng. Syst. Saf.
,
188
, pp.
23
35
.
30.
Yuan
,
K.
,
Xiao
,
N. C.
,
Wang
,
Z. L.
, and
Shang
,
K.
,
2020
, “
System Reliability Analysis by Combining Structure Function and Active Learning Kriging Model
,”
Reliab. Eng. Syst. Saf.
,
195
, p.
106734
.
31.
Zhang
,
J. H.
,
Xiao
,
M.
,
Gao
,
L.
, and
Chu
,
S.
,
2019
, “
A Combined Projection-Outline-Based Active Learning Kriging and Adaptive Importance Sampling Method for Hybrid Reliability Analysis with Small Failure Probabilities
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
13
33
.
32.
Papaioannou
,
I.
,
Papadimitriou
,
C.
, and
Straub
,
D.
,
2016
, “
Sequential Importance Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
62
, pp.
66
75
.
33.
Neal
,
R. M.
,
2011
, “MCMC Using Hamiltonian Dynamics,”
Handbook of Markov Chain Monte Carlo
,
CRC Press
,
New York
.
34.
Kurtz
,
N.
, and
Song
,
J. H.
,
2013
, “
Cross-Entropy-Based Adaptive Importance Sampling Using Gaussian Mixture
,”
Struct. Saf.
,
42
, pp.
35
44
.
35.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data via the EM Algorithm
,”
J. R. Stat. Soc. Series B: Stat. Methodol.
,
39
(
1
), pp.
1
22
.
36.
Neuman
,
S. P.
,
2003
, “
Maximum Likelihood Bayesian Averaging of Uncertain Model Predictions
,”
Stoch. Environ. Res. Risk Assess.
,
17
(
5
), pp.
291
305
.
37.
Yun
,
W. Y.
,
Lu
,
Z. Z.
,
Jiang
,
X.
,
Zhang
,
L. G.
, and
He
,
P. F.
,
2020
, “
AK-ARBIS: An Improved AK-MCS Based on the Adaptive Radial-Based Importance Sampling for Small Failure Probability
,”
Struct. Saf.
,
82
, p.
101891
.
38.
Xiong
,
Y. F.
, and
Sampath
,
S.
,
2021
, “
A Fast-Convergence Algorithm for Reliability Analysis Based on the AK-MCS
,”
Reliab. Eng. Syst. Saf.
,
213
, p.
107693
.
39.
Yang
,
X. F.
,
Liu
,
Y. S.
,
Mi
,
C. Y.
, and
Wang
,
X. J.
,
2018
, “
Active Learning Kriging Model Combining With Kernel-Density-Estimation-Based Importance Sampling Method for the Estimation of Low Failure Probability
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051402
.
40.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probabilistic Eng. Mech.
,
33
, pp.
47
57
.
41.
Cadini
,
F.
,
Santos
,
F.
, and
Zio
,
E.
,
2014
, “
An Improved Adaptive Kriging-Based Importance Technique for Sampling Multiple Failure Regions of Low Probability
,”
Reliab. Eng. Syst. Saf.
,
131
, pp.
109
117
.
42.
He
,
W. X.
,
Yang
,
H.
,
Zhao
,
G.
,
Zeng
,
Y.
, and
Li
,
G.
,
2021
, “
A Quantile-Based SORA Method Using Maximum Entropy Method With Fractional Moments
,”
ASME J. Mech. Des.
,
143
(
4
), p.
041702
.
43.
Sadoughi
,
M. K.
,
Li
,
M.
,
Hu
,
C.
,
MacKenzie
,
C. A.
,
Lee
,
S.
, and
Eshghi
,
A. T.
,
2018
, “
A High-Dimensional Reliability Analysis Method for Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071401
.
44.
Kiureghian
,
A. D.
, and
Stefano
,
M. D.
,
1991
, “
Efficient Algorithm for Second-Order Reliability Analysis
,”
J. Eng. Mech.
,
117
(
12
), pp.
2904
2923
.
45.
Meng
,
Z.
,
Guo
,
L. B.
, and
Wang
,
X.
,
2022
, “
A General Fidelity Transformation Framework for Reliability-Based Design Optimization With Arbitrary Precision
,”
Struct. Multidiscipl. Optim.
,
65
(
1
), pp.
1
16
.
46.
Havens
,
D.
,
Shiyekar
,
S.
,
Norris
,
A.
,
Bird
,
R. K.
,
Kapania
,
R. K.
, and
Olliffe
,
R.
,
2011
, “
Design, Optimization, and Evaluation of Integrally-Stiffened al-2139 Panel With Curved Stiffeners
,”
National Aeronautical and Space Administration
. NASA/TM-2011-217308.
47.
Meng
,
Z.
,
Zhang
,
D. Q.
,
Liu
,
Z. T.
, and
Li
,
G.
,
2018
, “
An Adaptive Directional Boundary Sampling Method for Efficient Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
140
(
12
), p.
121406
.
48.
Wang
,
J.
,
Sun
,
Z. L.
,
Yang
,
Q.
, and
Li
,
R.
,
2017
, “
Two Accuracy Measures of the Kriging Model for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
167
, pp.
494
505
.
49.
Sun
,
Z. L.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
152
165
.
You do not currently have access to this content.