Abstract

The cable-driven mechanism combines the advantages of rigid linkage mechanisms and flexible cable systems, featuring a compact structure, large workspace, low mass and inertia, and flexible motion capabilities. These characteristics hold significant theoretical and practical values in the field of lower limb rehabilitation robots. This article proposes a cable-driven lower limb rehabilitation robot with variable stiffness properties, consisting of a seat mechanism and a rehabilitation mechanism. Additionally, variable stiffness joints are introduced, enabling both active and passive stiffness adjustment. First, based on Lie group theory, the dynamic equations of the lower limb rehabilitation mechanism were derived, providing an efficient modeling method for multi-body systems with flexible joints. Second, this model was used to calculate the stiffness of robot's joints, which was then set as a constraint to construct a quadratic optimization function for the cable tension. This function is used to evaluate the changes in robot's joint stiffness and cable tension during rehabilitation training. Finally, simulation examples and experimental tests were conducted to verify the accuracy of the model and the feasibility of the rehabilitation training program.

References

1.
Colombo
,
G.
,
Joerg
,
M.
,
Schreier
,
R.
, and
Dietz
,
V.
,
2000
, “
Treadmill Training of Paraplegic Patients Using a Robotic Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
693
700
.
2.
Hesse
,
S.
,
Uhlenbrock
,
D.
,
Werner
,
C.
, and
Bardeleben
,
A.
,
2000
, “
A Mechanized Gait Trainer for Restoring Gait in Nonambulatory Subjects
,”
Arch. Phys. Med. Rehabil.
,
81
(
9
), pp.
1158
1161
.
3.
Li
,
W.
,
Liu
,
K.
,
Li
,
C.
,
Sun
,
Z.
,
Liu
,
S.
, and
Gu
,
J.
,
2022
, “
Development and Evaluation of a Wearable Lower Limb Rehabilitation Robot
,”
J. Bionic Eng.
,
19
(
3
), pp.
688
699
.
4.
Gonçalves
,
R. S.
, and
Rodrigues
,
L. A. O.
,
2022
, “
Development of Nonmotorized Mechanisms for Lower Limb Rehabilitation
,”
Robotica
,
40
(
1
), pp.
102
119
.
5.
Luo
,
S.
,
Androwis
,
G.
,
Adamovich
,
S.
,
Nunez
,
E.
,
Su
,
H.
, and
Zhou
,
X.
,
2023
, “
Robust Walking Control of a Lower Limb Rehabilitation Exoskeleton Coupled With a Musculoskeletal Model Via Deep Reinforcement Learning
,”
J. Neuroeng. Rehabil.
,
20
(
1
), p.
34
.
6.
Zhang
,
F.
,
Zhang
,
B.
,
Zhou
,
F.
,
Shang
,
W.
, and
Cong
,
S.
,
2020
, “
Configuration Selection and Parameter Optimization of Redundantly Actuated Cable-Driven Parallel Robots
,”
J. Mech. Eng.
,
56
(
1
), pp.
1
8
.
7.
Zhang
,
Z.
,
Shao
,
Z.
,
You
,
Z.
,
Tang
,
X.
,
Zi
,
B.
,
Yang
,
G.
,
Gosselin
,
C.
, and
Caro
,
S.
,
2022
, “
State-of-the-Art on Theories and Applications of Cable-Driven Parallel Robots
,”
Front. Mech. Eng.
,
17
(
3
), p.
37
.
8.
Ghrairi
,
K.
,
Chaker
,
A.
,
Salah
,
S.
, and
Bennour
,
S.
,
2022
, “
Development of a Cable-Driven Parallel Robots for Functional Rehabilitation
,”
Proceedings of International Conference Design and Modeling of Mechanical Systems
,
Hammamet, Tunisia
,
Aug. 20
, pp.
554
563
.
9.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
10.
Lytle
,
A. M.
,
Saidi
,
K. S.
,
Bostelman
,
R. V.
,
Stone
,
W. C.
, and
Scott
,
N. A.
,
2004
, “
Adapting a Teleoperated Device for Autonomous Control Using Three-Dimensional Positioning Sensors: Experiences With the NIST RoboCrane
,”
Autom. Constr.
,
13
(
1
), pp.
101
118
.
11.
Izard
,
J. B.
,
Dubor
,
A.
,
Hervé
,
P. E.
,
Cabay
,
E.
,
Culla
,
D.
,
Rodriguez
,
M.
, and
Barrado
,
M.
,
2018
, “
On the Improvements of a Cable-Driven Parallel Robot for Achieving Additive Manufacturing for Construction
,”
Mech. Mach. Sci.
,
53
(
1
), pp.
353
363
.
12.
Yao
,
R.
,
Tang
,
X.
,
Wang
,
J.
, and
Huang
,
P.
,
2009
, “
Dimensional Optimization Design of the Four-Cable-Driven Parallel Manipulator in FAST
,”
IEEE/ASME Trans. Mechatron.
,
15
(
6
), pp.
932
941
.
13.
Meunier
,
G.
,
Boulet
,
B.
, and
Nahon
,
M.
,
2009
, “
Control of an Overactuated Cable-Driven Parallel Mechanism for a Radio Telescope Application
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
1043
1054
.
14.
Surdilovic
,
D.
,
Zhang
,
J.
, and
Bernhardt
,
R.
,
2007
, “
STRING-MAN: Wire-Robot Technology for Safe, Flexible and Human-Friendly Gait Rehabilitation
,”
Proceedings of IEEE 10th International Conference on Rehabilitation Robotics (ICORR)
,
Noordwijk, Netherlands
,
June 13–15
, pp.
446
453
.
15.
Surdilovic
,
D.
, and
Bernhardt
,
R.
,
2004
, “
STRING-MAN: A New Wire Robot for Gait Rehabilitation
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
2031
2036
.
16.
Westerveld
,
A. J.
,
Aalderink
,
B. J.
,
Hagedoorn
,
W.
,
Buijze
,
M.
,
Schouten
,
A. C.
, and
Kooij
,
H.
,
2014
, “
A Damper Driven Robotic End-Point Manipulator for Functional Rehabilitation Exercises After Stroke
,”
IEEE Trans. Biomed. Eng.
,
61
(
10
), pp.
2646
2654
.
17.
Wang
,
H.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2019
, “
Exact Kinematic Modeling and Identification of Reconfigurable Cable-Driven Robots With Dual-Pulley Cable Guiding Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
774
784
.
18.
Park
,
E. J.
,
Kang
,
J.
,
Su
,
H.
,
Stegall
,
P.
,
Miranda
,
D. L.
,
Hsu
,
W.
,
Karabas
,
M.
, et al
,
2017
, “
Design and Preliminary Evaluation of a Multi-robotic System With Pelvic and Hip Assistance for Pediatric Gait Rehabilitation
,”
Proceedings of 2017 International Conference on Rehabilitation Robotics (ICORR)
,
London
,
July 17–20
, pp.
332
339
.
19.
Hidayah
,
R.
,
Bishop
,
L.
,
Jin
,
X.
,
Chamarthy
,
S.
,
Stein
,
J.
, and
Agrawal
,
S. K.
,
2020
, “
Gait Adaptation Using a Cable-Driven Active Leg Exoskeleton (C-ALEX) With Post-Stroke Participants
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
9
), pp.
1984
1993
.
20.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
21.
Roberts
,
R. G.
,
Graham
,
T.
, and
Trumpower
,
J. M.
,
1997
, “
On the Inverse Kinematics and Statics of Cable-Suspended Robots
,”
Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation
,
Orlando, FL
,
Oct. 12–15
, pp.
4291
4296
.
22.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
,
2004
, “
Design and Workspace Analysis of a 6–6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
.
23.
Taghavi
,
A.
,
Behzadipour
,
S.
,
Khalilinasab
,
N.
, and
Zohoor
,
H.
,
2013
, “
Workspace Improvement of Two-Link Cable-Driven Mechanisms With Spring Cable
,”
Cable-Driven Parallel Rob.
,
12
, pp.
201
213
.
24.
Mustafa
,
S. K.
, and
Agrawal
,
S. K.
,
2012
, “
Force-Closure of Spring-Loaded Cable-Driven Open Chains: Minimum Number of Cables Required & Influence of Spring Placements
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
1482
1487
.
25.
Liu
,
H.
,
Gosselin
,
C.
, and
Laliberté
,
T.
,
2012
, “
Conceptual Design and Static Analysis of Novel Planar Spring-Loaded Cable-Loop-Driven Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021001
.
26.
Shao
,
Y.
,
Zhang
,
W.
,
Su
,
Y.
, and
Ding
,
X.
,
2021
, “
Design and Optimisation of Load-Adaptive Actuator With Variable Stiffness for Compact Ankle Exoskeleton
,”
Mech. Mach. Theory
,
161
, p.
104323
.
27.
Wu
,
J.
,
Wang
,
Z.
,
Chen
,
W.
, and
Liu
,
Y.
,
2020
, “
Design and Validation of a Novel Leaf Spring-Based Variable Stiffness Joint With Reconfigurability
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
2045
2053
.
28.
Liu
,
Y.
,
Liu
,
X.
,
Yuan
,
Z.
, and
Liu
,
J.
,
2019
, “
Design and Analysis of Spring Parallel Variable Stiffness Actuator Based on Antagonistic Principle
,”
Mech. Mach. Theory
,
140
, pp.
44
58
.
29.
Wolf
,
S.
, and
Hirzinger
,
G.
,
2008
, “
A New Variable Stiffness Design: Matching Requirements of the Next Robot Generation
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
1741
1746
.
30.
Jafari
,
A.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2011
, “
A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS)
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
355
365
.
31.
Jafari
,
A.
,
Tsagarakis
,
N. G.
,
Sardellitti
,
I.
, and
Caldwell
,
D. G.
,
2012
, “
A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
55
63
.
32.
Wang
,
W.
,
Zhao
,
Y.
, and
Li
,
Y.
,
2018
, “
Design and Dynamic Modeling of Variable Stiffness Joint Actuator Based on Archimedes Spiral
,”
IEEE Access
,
6
, pp.
43798
43807
.
33.
Mohan
,
S.
,
Mohanta
,
J. K.
,
Kurtenbach
,
S.
,
Paris
,
J.
,
Corves
,
B.
, and
Huesing
,
M.
,
2017
, “
Design, Development and Control of a 2PRP-2PPR Planar Parallel Manipulator for Lower Limb Rehabilitation Therapies
,”
Mech. Mach. Theory
,
112
, pp.
272
294
.
34.
Birlescu
,
I.
,
Tohanean
,
N.
,
Vaida
,
C.
,
Gherman
,
B.
,
Neguran
,
D.
,
Horsia
,
A.
,
Tucan
,
P.
,
Condurache
,
D.
, and
Pisla
,
D.
,
2024
, “
Modeling and Analysis of a Parallel Robotic System for Lower Limb Rehabilitation With Predefined Operational Workspace
,”
Mech. Mach. Theory
,
198
, p.
105674
.
35.
Zhang
,
S.
,
Fan
,
L.
,
Ye
,
J.
,
Chen
,
G.
,
Fu
,
C.
, and
Leng
,
Y.
,
2023
, “
An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
31
, pp.
3106
3117
.
36.
Qu
,
X.
,
Cao
,
D.
,
Qu
,
R.
, and
Zhang
,
S.
,
2022
, “
A Novel Design of Torsion Spring-Connected Nonlinear Stiffness Actuator Based on Cam Mechanism
,”
ASME J. Mech. Des.
,
144
(
8
), p.
083303
.
37.
Lin
,
Y. C.
,
Wang
,
M. J. J.
, and
Wang
,
E. M.
,
2004
, “
The Comparisons of Anthropometric Characteristics among Four Peoples in East Asia
,”
Appl. Ergon.
,
35
(
2
), pp.
173
178
.
38.
Lamine
,
H.
,
Laribi
,
M. A.
,
Bennour
,
S.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2017
, “
Design Study of a Cable-Based Gait Training Machine
,”
J. Bionic Eng.
,
14
(
2
), pp.
232
244
.
39.
Liu
,
L.
,
Leonhardt
,
S.
,
Ngo
,
C.
, and
Misgeld
,
B. J. E.
,
2019
, “
Impedance-Controlled Variable Stiffness Actuator for Lower Limb Robot Applications
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
2
), pp.
991
1004
.
You do not currently have access to this content.