Abstract

Robots require compliant actuators capable of reducing tremendous stress shocks while maintaining fast response and lightweight. Bistable tensegrity structures have excellent performances such as fast response and high efficiency. In this study, a novel fast response gripper based on a dual-triangle bistable tensegrity structure was explored. The bistable properties of the dual-triangle tensegrity structure were analyzed from the perspective of the energy landscape. Two optimization methods were employed to adjust the structural parameters of it, aiming to achieve the desired energy landscape and agility properties. One of these optimization methods is innovative, utilizing equilibrium constraints to optimize with higher accuracy and computational efficiency. Its distinguishing feature is the ability to optimize the energy differences of bistable structures in precise equilibrium configurations without the need for discretization. By applying this method, a gripper based on the dual-triangle tensegrity structure was designed. The gripper demonstrated excellent performances in fast response and easy-trigger, verifying the feasibility of this method. This research is significant for developing fast response grippers, morphing structures, and multistable robots, which have potential applications in foldable robots, bird-like micro aerial vehicles, fruit-picking mechanisms, and more.

References

1.
Lin
,
Y.
,
Zhang
,
C.
,
Tang
,
W.
,
Jiao
,
Z.
,
Wang
,
J.
,
Wang
,
W.
,
Zhong
,
Y.
, et al.,
2021
, “
A Bioinspired Stress-Response Strategy for High-Speed Soft Grippers
,”
Adv. Sci.
,
8
(
21
), p.
2102539
.
2.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
3.
Luo
,
J.
,
Jiang
,
P.
,
Li
,
X.
,
Bai
,
L.
,
Liu
,
F.
, and
Chen
,
R.
,
2022
, “
A Soft Self-stable Actuator and Its Energy-Efficient Grasping
,”
Actuators
,
11
(
4
), p.
107
.
4.
Hutmacher
,
D.
,
Gorissen
,
B.
,
Liponsky
,
S.
,
Bertoldi
,
K.
,
Shabab
,
T.
, and
Bas
,
O.
,
2021
, “
Ultrafast Soft Actuators
,”
Multifunct. Mater
,
4
.
5.
Skelton
,
R. E.
, and
De Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer
,
New York
.
6.
Liu
,
Y.
,
Bi
,
Q.
,
Yue
,
X.
,
Wu
,
J.
,
Yang
,
B.
, and
Li
,
Y.
,
2022
, “
A Review on Tensegrity Structures-Based Robots
,”
Mech. Mach. Theory
,
168
, p.
104571
.
7.
Skelton
,
R. E.
,
Helton
,
J. W.
,
Adhikari
,
R.
,
Pinaud
,
J.-P.
, and
Chan
,
W.
,
2017
, “An Introduction to the Mechanics of Tensegrity Structures,”
The Mechanical Systems Design Handbook
,
CRC Press
,
Boca Raton, FL
, pp.
315
388
.
8.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory
,
159
, p.
104249
.
9.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2022
, “
Elastostatic Modeling of Multi-link Flexible Manipulator Based on Two-Dimensional Dual-Triangle Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021002
.
10.
Böhm
,
V.
, and
Zimmermann
,
K.
,
2013
, “
Vibration-Driven Mobile Robots Based on Single Actuated Tensegrity Structures
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
5475
5480
.
11.
Chung
,
Y. S.
,
Lee
,
J.-H.
,
Jang
,
J. H.
,
Choi
,
H. R.
, and
Rodrigue
,
H.
,
2019
, “
Jumping Tensegrity Robot Based on Torsionally Prestrained SMA Springs
,”
ACS Appl. Mater. Interfaces
,
11
(
43
), pp.
40793
40799
.
12.
Chen
,
B.
, and
Jiang
,
H.
,
2019
, “
Swimming Performance of a Tensegrity Robotic Fish
,”
Soft Rob.
,
6
(
4
), pp.
520
531
.
13.
Shintake
,
J.
,
Zappetti
,
D.
,
Peter
,
T.
,
Ikemoto
,
Y.
, and
Floreano
,
D.
,
2020
, “
Bio-Inspired Tensegrity Fish Robot
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, IEEE, pp.
2887
2892
.
14.
Liu
,
Y.
,
Bi
,
Q.
, and
Li
,
Y.
,
2021
, “
Development of a Bio-inspired Soft Robotic Gripper Based on Tensegrity Structures
,”
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
, IEEE, pp.
7398
7403
.
15.
Böhm
,
V.
,
Sumi
,
S.
,
Kaufhold
,
T.
, and
Zimmermann
,
K.
,
2016
, “
Compliant Multistable Tensegrity Structures with Simple Topologies
,”
European Conference on Mechanism Science 2016
,
Nantes, France
,
Sept. 20–23
, Springer, pp.
153
161
.
16.
Sumi
,
S.
,
Boehm
,
V.
, and
Zimmermann
,
K.
,
2017
, “
A Multistable Tensegrity Structure With a Gripper Application
,”
Mech. Mach. Theory
,
114
, pp.
204
217
.
17.
Sumi
,
S.
,
Böhm
,
V.
,
Schale
,
F.
,
Roeder
,
R.
,
Karguth
,
A.
, and
Zimmermann
,
K.
,
2017
, “
A Novel Gripper Based on a Compliant Multistable Tensegrity Mechanism
,” Microactuators and Micromechanisms: Proceedings of MAMM-2016, Ilmenau, Oct. 5–7, 2016,
Springer
, pp.
115
126
.
18.
Sumi
,
S.
,
Schorr
,
P.
,
Böhm
,
V.
, and
Zimmermann
,
K.
,
2018
, “
Dynamic Analysis of a Compliant Tensegrity Structure for the Use in a Gripper Application
,” Dynamical Systems in Theoretical Perspective, Łódź, Poland, Dec. 11–14, 2017,
Springer
, pp.
323
334
.
19.
Cao
,
Y.
,
Derakhshani
,
M.
,
Fang
,
Y.
,
Huang
,
G.
, and
Cao
,
C.
,
2021
, “
Bistable Structures for Advanced Functional Systems
,”
Adv. Funct. Mater.
,
31
(
45
), p.
2106231
.
20.
Liu
,
Y.
,
Luo
,
K.
,
Wang
,
S.
,
Song
,
X.
,
Zhang
,
Z.
,
Tian
,
Q.
, and
Hu
,
H.
,
2023
, “
A Soft and Bistable Gripper With Adjustable Energy Barrier for Fast Capture in Space
,”
Soft Rob.
,
10
(
1
), pp.
77
87
.
21.
Mouaze
,
N.
, and
Birglen
,
L.
,
2022
, “
Bistable Compliant Underactuated Gripper for the Gentle Grasp of Soft Objects
,”
Mech. Mach. Theory
,
170
, p.
104676
.
22.
Zhang
,
H.
,
Lerner
,
E.
,
Cheng
,
B.
, and
Zhao
,
J.
,
2020
, “
Compliant Bistable Grippers Enable Passive Perching for Micro Aerial Vehicles
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2316
2326
.
23.
Yasuda
,
H.
,
Johnson
,
K.
,
Arroyos
,
V.
,
Yamaguchi
,
K.
,
Raney
,
J. R.
, and
Yang
,
J.
,
2022
, “
Leaf-Like Origami With Bistability for Self-adaptive Grasping Motions
,”
Soft Rob.
,
9
(
5
), pp.
938
947
.
24.
O’Driscoll
,
D.
,
Bruce
,
P. J.
, and
Santer
,
M. J.
,
2020
, “
Origami-Based TPS Folding Concept for Deployable Mars Entry Vehicles
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
1897
.
25.
Daynes
,
S.
,
Weaver
,
P.
, and
Trevarthen
,
J.
,
2011
, “
A Morphing Composite Air Inlet With Multiple Stable Shapes
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
961
973
.
26.
Li
,
Y.
,
Chandra
,
A.
,
Dorn
,
C. J.
, and
Lang
,
R. J.
,
2020
, “
Reconfigurable Surfaces Employing Linear-Rotational and Bistable-Translational (LRBT) Joints
,”
Int. J. Solids Struct.
,
207
, pp.
22
41
.
27.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci. USA
,
115
(
22
), pp.
5698
5702
.
28.
Wan
,
Y.
,
Cuff
,
K.
, and
Serpe
,
M. J.
,
2022
, “
A Wirelessly Controlled Shape-Memory Alloy-Based Bistable Metal Swimming Device
,”
Adv. Intell. Syst.
,
4
(
5
), p.
2100251
.
29.
Tang
,
Y.
,
Chi
,
Y.
,
Sun
,
J.
,
Huang
,
T.-H.
,
Maghsoudi
,
O. H.
,
Spence
,
A.
,
Zhao
,
J.
,
Su
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Elastic Instabilities for Amplified Performance: Spine-Inspired High-Speed and High-Force Soft Robots
,”
Sci. Adv.
,
6
(
19
), p.
eaaz6912
.
30.
Jin
,
T.
,
Li
,
L.
,
Wang
,
T.
,
Wang
,
G.
,
Cai
,
J.
,
Tian
,
Y.
, and
Zhang
,
Q.
,
2021
, “
Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
748
764
.
31.
Zi
,
P.
,
Xu
,
K.
,
Tian
,
Y.
, and
Ding
,
X.
,
2023
, “
A Mechanical Adhesive Gripper Inspired by Beetle Claw for a Rock Climbing Robot
,”
Mech. Mach. Theory
,
181
, p.
105168
.
32.
Rothemund
,
P.
,
Ainla
,
A.
,
Belding
,
L.
,
Preston
,
D. J.
,
Kurihara
,
S.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2018
, “
A Soft, Bistable Valve for Autonomous Control of Soft Actuators
,”
Sci. Rob.
,
3
(
16
), p.
eaar7986
.
33.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.
34.
Meng
,
Z.
,
Liu
,
M.
,
Yan
,
H.
,
Genin
,
G. M.
, and
Chen
,
C. Q.
,
2022
, “
Deployable Mechanical Metamaterials With Multistep Programmable Transformation
,”
Sci. Adv.
,
8
(
23
), p.
eabn5460
.
35.
Woods
,
C.
, and
Vikas
,
V.
,
2023
, “
Design and Modeling Framework for Dexter: Dexterous Continuum Tensegrity Manipulator
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031006
.
36.
Ikemoto
,
S.
,
Tsukamoto
,
K.
, and
Yoshimitsu
,
Y.
,
2021
, “
Development of a Modular Tensegrity Robot Arm Capable of Continuous Bending
,”
Front. Rob. AI
,
8
.
37.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision–Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.
38.
Han
,
Q.
,
Jin
,
K.
,
Chen
,
G.
, and
Shao
,
X.
,
2017
, “
A Novel Fully Compliant Tensural-Compresural Bistable Mechanism
,”
Sens. Actuators A
,
268
, pp.
72
82
.
39.
Liu
,
T.
, and
Hao
,
G.
,
2022
, “
Design of Deployable Structures by Using Bistable Compliant Mechanisms
,”
Micromachines
,
13
(
5
), p.
651
.
40.
Zhang
,
C.
,
Yin
,
X.
,
Chen
,
R.
,
Ju
,
K.
,
Hao
,
Y.
,
Wu
,
T.
,
Sun
,
J.
, and
Xu
,
Y.
,
2024
, “
A Review on Reprogrammable Bistable Structures
,”
Smart Mater. Struct.
,
33
, p.
093001
.
41.
Liu
,
T.
,
Hao
,
G.
,
Zhu
,
J.
,
Kuresangsai
,
P.
,
Abdelaziz
,
S.
, and
Wehrle
,
E.
,
2024
, “
Modeling Compliant Bistable Mechanisms: An Energy Method Based on the High-Order Smooth Curvature Model
,”
Int. J. Mech. Sci.
,
275
, p.
109315
.
42.
Jensen
,
B. D.
,
Parkinson
,
M. B.
,
Kurabayashi
,
K.
,
Howell
,
L. L.
, and
Baker
,
M. S.
,
2001
, “
Design Optimization of a Fully-Compliant Bistable Micro-Mechanism
,”
2001 ASME International Mechanical Engineering Congress and Exposition
,
New York
,
Nov. 11–16
, American Society of Mechanical Engineers, pp.
357
363
.
43.
Huang
,
Y.
,
Zhao
,
J.
, and
Liu
,
S.
,
2016
, “
Design Optimization of Segment-Reinforced Bistable Mechanisms Exhibiting Adjustable Snapping Behavior
,”
Sens. Actuators A
,
252
, pp.
7
15
.
44.
Chen
,
Q.
,
Zhang
,
X.
,
Zhang
,
H.
,
Zhu
,
B.
, and
Chen
,
B.
,
2019
, “
Topology Optimization of Bistable Mechanisms With Maximized Differences Between Switching Forces in Forward and Backward Direction
,”
Mech. Mach. Theory
,
139
, pp.
131
143
.
45.
Tran
,
N. D. K.
, and
Wang
,
D.-A.
,
2017
, “
Design of a Crab-Like Bistable Mechanism for Nearly Equal Switching Forces in Forward and Backward Directions
,”
Mech. Mach. Theory
,
115
, pp.
114
129
.
46.
Chau
,
N. L.
,
Tran
,
N. T.
, and
Dao
,
T.-P.
,
2021
, “
A Hybrid Computational Method for Optimization Design of Bistable Compliant Mechanism
,”
Eng. Comput.
,
38
(
4
), pp.
1476
1512
.
47.
Böhm
,
V.
,
Zeidis
,
I.
, and
Zimmermann
,
K.
,
2015
, “
An Approach to the Dynamics and Control of a Planar Tensegrity Structure With Application in Locomotion Systems
,”
Int. J. Dyn. Control
,
3
, pp.
41
49
.
48.
Arnouts
,
L. I.
,
Massart
,
T. J.
,
De Temmerman
,
N.
, and
Berke
,
P. Z.
,
2019
, “
Computational Design of Bistable Deployable Scissor Structures: Trends and Challenges
,”
J. Int. Assoc. Shell Spatial Struct.
,
60
(
1
), pp.
19
34
.
49.
Zhang
,
P.
,
Zhou
,
J.
, and
Chen
,
J.
,
2021
, “
Form-Finding of Complex Tensegrity Structures Using Constrained Optimization Method
,”
Compos. Struct.
,
268
, p.
113971
.
50.
Li
,
Y.
, and
Pellegrino
,
S.
,
2020
, “
A Theory for the Design of Multi-stable Morphing Structures
,”
J. Mech. Phys. Solids
,
136
, p.
103772
.
51.
Sumi
,
S.
,
Böhm
,
V.
,
Schale
,
F.
, and
Zimmermann
,
K.
,
2016
, “
Compliant Gripper Based on a Multistable Tensegrity Structure
,”
European Conference on Mechanism Science 2016
,
Nantes, France
,
Sept. 20–23
, Springer, pp.
143
151
.
52.
Shimura
,
K.
,
Iwamoto
,
N.
, and
Umedachi
,
T.
,
2023
, “
Bistable Tensegrity Robot With Jumping Repeatability Based on Rigid Plate-Shaped Compressors
,”
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Detroit, MI
,
Oct. 1–5
, IEEE, pp.
8324
8330
.
53.
Tanouye
,
M. M.
, and
Vikas
,
V.
,
2018
, “
Static and Stability Analysis of a Planar Compliant Tensegrity Mechanism
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
.
54.
Wenger
,
P.
, and
Chablat
,
D.
,
2019
, “
Kinetostatic Analysis and Solution Classification of a Class of Planar Tensegrity Mechanisms
,”
Robotica
,
37
(
7
), pp.
1214
1224
.
55.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
56.
Li
,
Y.
,
2022
, “
A Method of Designing a Prescribed Energy Landscape for Morphing Structures
,”
Int. J. Solids Struct.
,
242
, p.
111500
.
57.
Rajabi
,
H.
,
Eraghi
,
S. H.
,
Khaheshi
,
A.
,
Toofani
,
A.
,
Hunt
,
C.
, and
Wootton
,
R. J.
,
2022
, “
An Insect-Inspired Asymmetric Hinge in a Double-Layer Membrane
,”
Proc. Natl. Acad. Sci. USA
,
119
(
45
), p.
e2211861119
.
58.
Zhang
,
P.
, and
Tang
,
B.
,
2022
, “
A Two-Finger Soft Gripper Based on Bistable Mechanism
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
11330
11337
.
59.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2020
, “
Stiffness Analysis of a New Tensegrity Mechanism Based on Planar Dual-Triangles
,”
17th International Conference on Informatics in Control, Automation and Robotics
,
Paris, France
,
July 7–9
, pp.
402
411
.
60.
Zhao
,
W.
,
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2020
, “
The Stability and Stiffness Analysis of a Dual-Triangle Planar Rotation Mechanism
,”
ASME 2020: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
August 2020
.
61.
Thompson
,
J.
,
Hunt
,
G.
, and
Tvergaard
,
V.
,
1985
, “
Elastic Instability Phenomena
,”
J. Appl. Mech.
,
52
(
1
), pp.
241
242
.
62.
Carrella
,
A.
,
Brennan
,
M.
,
Waters
,
T.
, and
Lopes
,
V.
, Jr.,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static-Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.
63.
Overvelde
,
J. T.
,
Kloek
,
T.
,
D’haen
,
J. J.
, and
Bertoldi
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-Through Instabilities
,”
Proc. Natl. Acad. Sci. USA
,
112
(
35
), pp.
10863
10868
.
You do not currently have access to this content.