Abstract

Bayesian inference based on computational simulations plays a crucial role in model-informed damage diagnostics and the design of reliable engineering systems, such as the miter gates studied in this article. While Bayesian inference for damage diagnostics has shown success in some applications, the current method relies on monitoring data from solely the asset of interest and may be affected by imperfections in the computational simulation model. To address these limitations, this article introduces a novel approach called Bayesian inference-based damage diagnostics enhanced through domain translation (BiEDT). The proposed BiEDT framework incorporates historical damage inspection and monitoring data from similar yet different miter gates, aiming to provide alternative data-driven methods for damage diagnostics. The proposed framework first translates observations from different miter gates into a unified analysis domain using two domain translation techniques, namely, cycle-consistent generative adversarial network (CycleGAN) and domain-adversarial neural network (DANN). Following the domain translation, a conditional invertible neural network (cINN) is employed to estimate the damage state, with uncertainty quantified in a Bayesian manner. Additionally, a Bayesian model averaging and selection method is developed to integrate the posterior distributions from different methods and select the best model for decision-making. A practical miter gate structural system is employed to demonstrate the efficacy of the BiEDT framework. Results indicate that the alternative damage diagnostics approaches based on domain translation can effectively enhance the performance of Bayesian inference-based damage diagnostics using computational simulations.

References

1.
Foltz
,
S. D.
,
2017
,
Investigation of Mechanical Breakdowns Leading to Lock Closures
,
Construction Engineering Research Laboratory (U.S.) Engineer Research and Development Center (U.S.)
,
Champaign, IL
.
2.
Eick
,
B. A.
,
Treece
,
Z. R.
,
Spencer
,
B. F., Jr.
,
Smith
,
M. D.
,
Sweeney
,
S. C.
,
Alexander
,
Q. G.
, and
Foltz
,
S. D.
,
2018
, “
Automated Damage Detection in Miter Gates of Navigation Locks
,”
Struct. Control Health Monit.
,
25
(
1
), p.
e2053
.
3.
Wang
,
Z.
,
Huang
,
H.-Z.
, and
Du
,
X.
,
2010
, “
Optimal Design Accounting for Reliability, Maintenance, and Warranty
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011007
.
4.
Vega
,
M. A.
,
Hu
,
Z.
,
Fillmore
,
T. B.
,
Smith
,
M. D.
, and
Todd
,
M. D.
,
2021
, “
A Novel Framework for Integration of Abstracted Inspection Data and Structural Health Monitoring for Damage Prognosis of Miter Gates
,”
Reliab. Eng. Syst. Saf.
,
211
(
1
), p.
107561
.
5.
Estes
,
A. C.
,
Frangopol
,
D. M.
, and
Foltz
,
S. D.
,
2004
, “
Updating Reliability of Steel Miter Gates on Locks and Dams Using Visual Inspection Results
,”
Eng. Struct.
,
26
(
3
), pp.
319
333
.
6.
Liu
,
X.
, and
Wang
,
P.
,
2022
, “
Valuation of Continuous Monitoring Systems for Engineering System Design in Recurrent Maintenance Decision Scenarios
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091702
.
7.
Chadha
,
M.
,
Hu
,
Z.
,
Farrar
,
C. R.
, and
Todd
,
M. D.
,
2024
, “
Risk and Value Informed Structural Health Monitoring System Design for the Miter Gates
,”
eJNDT
,
29
(
7
).
8.
Nemani
,
V.
,
Thelen
,
A.
,
Hu
,
C.
, and
Daining
,
S.
,
2023
, “
Degradation-Aware Ensemble of Diverse Predictors for Remaining Useful Life Prediction
,”
ASME J. Mech. Des.
,
145
(
3
), p.
031706
.
9.
Eick
,
B. A.
,
Treece
,
Z. R.
,
Spencer
,
B. F., Jr.
,
Smith
,
M. D.
,
Sweeney
,
S. C.
,
Alexander
,
Q. G.
, and
Foltz
,
S. D.
,
2018
, “
Automated Damage Detection in Miter Gates of Navigation Locks
,”
Struct. Control Health Monit.
,
25
(
1
), p.
e2053
, STC-16-0245.R2.
11.
Karbhari
,
V. M.
, and
Ansari
,
A.
,
2009
,
Structural Health Monitoring of Civil Infrastructure Systems
,
Woodhead Publishing Series in Civil and Structural Engineering
,
Sawston, Cambridge
.
12.
Thelen
,
A.
,
Zhang
,
X.
,
Fink
,
O.
,
Lu
,
Y.
,
Ghosh
,
S.
,
Youn
,
B. D.
,
Todd
,
M. D.
,
Mahadevan
,
S.
,
Hu
,
C.
, and
Hu
,
Z.
,
2022
, “
A Comprehensive Review of Digital Twin—Part 1: Modeling and Twinning Enabling Technologies
,”
Struct. Multidiscipl. Optim.
,
65
(
12
), p.
354
.
13.
Ramancha
,
M. K.
,
Vega
,
M. A.
,
Conte
,
J. P.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2022
, “
Bayesian Model Updating With Finite Element vs Surrogate Models: Application to a Miter Gate Structural System
,”
Eng. Struct.
,
272
, p.
114901
.
14.
Levine
,
N.
,
Golecki
,
T.
,
Gomez
,
F.
,
Eick
,
B.
, and
Spencer
,
B. F.
,
2023
, “
Bayesian Model Updating of Concrete-Embedded Miter Gate Anchorages and Implications for Design
,”
Struct. Multidiscipl. Optim.
,
66
(
3
), p.
60
.
15.
Qian
,
G.
,
Wu
,
Z.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2024
, “
Pitting Corrosion Diagnostics and Prognostics for Miter Gates Using Multiscale Simulation and Image Inspection Data
,”
Struct. Health Monit
.
16.
Qian
,
G.
,
Zeng
,
J.
,
Hu
,
Z.
, and
Todd
,
M.
,
2024
, “
Bayesian Model Updating of Multiscale Simulations Informing Corrosion Prognostics Using Conditional Invertible Neural Networks
,”
ASCE-ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
11
(
1
), p.
011105
.
17.
Zeng
,
Y.
,
Zeng
,
J.
,
Todd
,
M.
, and
Hu
,
Z.
,
2024
, “
Data Augmentation Based on Image Translation for Bayesian Inference-Based Damage Diagnostics of Miter Gates
,”
ASCE-ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
11
(
1
), p.
011103
.
18.
Bull
,
L. A.
,
Gardner
,
P. A.
,
Gosliga
,
J.
,
Rogers
,
T. J.
,
Dervilis
,
N.
,
Cross
,
E. J.
,
Papatheou
,
E.
,
Maguire
,
A.
,
Campos
,
C.
, and
Worden
,
K.
,
2021
, “
Foundations of Population-Based SHM, Part I: Homogeneous Populations and Forms
,”
Mech. Syst. Signal Process.
,
148
(
1
), p.
107141
.
19.
Gosliga
,
J.
,
Gardner
,
P.
,
Bull
,
L.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2021
, “
Foundations of Population-Based SHM, Part II: Heterogeneous Populations–Graphs, Networks, and Communities
,”
Mech. Syst. Signal Process.
,
148
(
1
), p.
107144
.
20.
Gardner
,
P.
,
Bull
,
L.
,
Gosliga
,
J.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2021
, “
Foundations of Population-Based SHM, Part III: Heterogeneous Populations—Mapping and Transfer
,”
Mech. Syst. Signal Process.
,
149
, p.
107142
.
21.
Whalen
,
E.
, and
Mueller
,
C.
,
2022
, “
Toward Reusable Surrogate Models: Graph-Based Transfer Learning on Trusses
,”
ASME J. Mech. Des.
,
144
(
2
), p.
021704
.
22.
Huang
,
X.
,
Xie
,
T.
,
Wang
,
Z.
,
Chen
,
L.
,
Zhou
,
Q.
, and
Hu
,
Z.
,
2022
, “
A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing
,”
ASCE-ASME J. Risk Uncert. Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
011104
.
23.
Venkateswara
,
H.
, and
Panchanathan
,
S.
,
2020
,
Introduction to Domain Adaptation
,
Springer International Publishing
,
Cham
, pp.
3
21
.
24.
Chun
,
P.-j.
, and
Kikuta
,
T.
,
2024
, “
Self-Training With Bayesian Neural Networks and Spatial Priors for Unsupervised Domain Adaptation in Crack Segmentation
,”
Comput.-Aided Civil Infrastruct. Eng.
,
39
(
17
), pp.
2642
2661
.
25.
Chen
,
Z.
,
Wang
,
C.
,
Wu
,
J.
,
Deng
,
C.
, and
Wang
,
Y.
,
2023
, “
Deep Convolutional Transfer Learning-Based Structural Damage Detection With Domain Adaptation
,”
Appl. Intell.
,
53
(
5
), pp.
5085
5099
.
26.
Huang
,
C.-G.
,
Zhu
,
J.
,
Han
,
Y.
, and
Peng
,
W.
,
2022
, “
A Novel Bayesian Deep Dual Network With Unsupervised Domain Adaptation for Transfer Fault Prognosis Across Different Machines
,”
IEEE Sens. J.
,
22
(
8
), pp.
7855
7867
.
27.
Li
,
J.
, and
He
,
D.
,
2020
, “
A Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters for Domain Adaptation Remaining Useful Life Prediction
,”
IEEE Access
,
8
(
1
), pp.
41482
41501
.
28.
Kwak
,
M.
, and
Lee
,
J.
,
2023
, “
Diagnosis-Based Domain-Adaptive Design Using Designable Data Augmentation and Bayesian Transfer Learning: Target Design Estimation and Validation
,”
Appl. Soft Comput.
,
143
, p.
110459
.
29.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
.
30.
Zeng
,
Y.
,
Zeng
,
J.
,
Todd
,
M.
, and
Hu
,
Z.
,
2024
, “
Augmenting Bayesian Inference-Based Damage Diagnostics of Miter Gates Based on Image Translation
,”
ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 25–28
.
31.
Jiang
,
C.
,
Vega
,
M. A.
,
Ramancha
,
M. K.
,
Todd
,
M. D.
,
Conte
,
J. P.
,
Parno
,
M.
, and
Hu
,
Z.
,
2022
, “
Bayesian Calibration of Multi-Level Model With Unobservable Distributed Response and Application to Miter Gates
,”
Mech. Syst. Signal Process.
,
170
(
1
), p.
108852
.
32.
Hu
,
Z.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Majcher
,
M.
,
2020
, “
Testing Design Optimization for Uncertainty Reduction in Generating Off-Road Mobility Map Using a Bayesian Approach
,”
ASME J. Mech. Des.
,
142
(
2
), p.
021402
.
33.
Zhu
,
J.-Y.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
, pp.
2223
2232
.
34.
Zhu
,
J.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
,”
CoRR
.
35.
Ganin
,
Y.
,
Ustinova
,
E.
,
Ajakan
,
H.
,
Germain
,
P.
,
Larochelle
,
H.
,
Laviolette
,
F.
,
Marchand
,
M.
, and
Lempitsky
,
V.
,
2016
, “
Domain-Adversarial Training of Neural Networks
,”
J. Mach. Learn. Res.
,
17
(
1
), pp.
2096
2030
.
36.
Papamakarios
,
G.
,
Nalisnick
,
E.
,
Rezende
,
D. J.
,
Mohamed
,
S.
, and
Lakshminarayanan
,
B.
,
2021
, “
Normalizing Flows for Probabilistic Modeling and Inference
,”
J. Mach. Learn. Res.
,
22
(
57
), pp.
1
64
.
37.
Kobyzev
,
I.
,
Prince
,
S. J.
, and
Brubaker
,
M. A.
,
2020
, “
Normalizing Flows: An Introduction and Review of Current Methods
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
11
), pp.
3964
3979
.
38.
Noori
,
M.
,
Yuan
,
F.-G.
, and
Farsangi
,
E. N.
,
2023
,
Data-Centric Structural Health Monitoring: Mechanical, Aerospace and Complex Infrastructure Systems
,
Walter de Gruyter GmbH & Co KG
,
Berlin, Germany
.
39.
Zeng
,
J.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2023
, “
Probabilistic Damage Detection Using a New Likelihood-Free Bayesian Inference Method
,”
J. Civil Struct. Health Monit.
,
13
(
2
), pp.
319
341
.
40.
Ardizzone
,
L.
,
Kruse
,
J.
,
Wirkert
,
S.
,
Rahner
,
D.
,
Pellegrini
,
E. W.
,
Klessen
,
R. S.
,
Maier-Hein
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2019
, “
Analyzing Inverse Problems with Invertible Neural Networks
,”
ICLR 2019
,
New Orleans, LA
,
May 6–9
.
41.
Radev
,
S. T.
,
Mertens
,
U. K.
,
Voss
,
A.
,
Ardizzone
,
L.
, and
Köthe
,
U.
,
2020
, “
BayesFlow: Learning Complex Stochastic Models With Invertible Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
33
(
4
), pp.
1452
1466
.
42.
Ardizzone
,
L.
,
Lüth
,
C.
,
Kruse
,
J.
,
Rother
,
C.
, and
Köthe
,
U.
,
2020
, “
Conditional Invertible Neural Networks for Guided Image Generation
,”
ICLR 2020
,
Addis Ababa, Ethiopia
,
Apr. 30
.
43.
Dinh
,
L.
,
Sohl-Dickstein
,
J.
, and
Bengio
,
S.
,
2017
, “
Density Estimation Using Real NVP
,”
ICLR 2017
,
Toulon, France
,
Apr. 24–26
.
44.
Ardizzone
,
L.
,
Kruse
,
J.
,
Lüth
,
C.
,
Bracher
,
N.
,
Rother
,
C.
, and
Köthe
,
U.
,
2020
, “
Conditional Invertible Neural Networks for Diverse Image-to-Image Translation
,” Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR 2020, Tübingen, Germany, Sept. 28–Oct. 1, Proceedings 42,
Springer
, pp.
373
387
.
45.
Hu
,
Z.
,
Hu
,
C.
,
Mourelatos
,
Z. P.
, and
Mahadevan
,
S.
,
2019
, “
Model Discrepancy Quantification in Simulation-Based Design of Dynamical Systems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011401
.
46.
Thelen
,
A.
,
Zhang
,
X.
,
Fink
,
O.
,
Lu
,
Y.
,
Ghosh
,
S.
,
Youn
,
B. D.
,
Todd
,
M. D.
,
Mahadevan
,
S.
,
Hu
,
C.
, and
Hu
,
Z.
,
2023
, “
A Comprehensive Review of Digital Twin—Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives
,”
Struct. Multidiscipl. Optim.
,
66
(
1
), p.
1
.
47.
Hu
,
Z.
,
Hu
,
C.
, and
Hu
,
W.
,
2024
,
Structural Health Monitoring/ Management (SHM) in Aerospace Structures
, 1st ed.,
Woodhead Publishing
,
Cambridge, UK
, pp.
453
501
.
48.
Jiang
,
Z.
,
Li
,
W.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2015
, “
A Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach With Model Uncertainty
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101402
.
49.
Jiang
,
C.
,
Hu
,
Z.
,
Liu
,
Y.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
, and
Jayakumar
,
P.
,
2020
, “
A Sequential Calibration and Validation Framework for Model Uncertainty Quantification and Reduction
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113172
.
50.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
958
.
51.
Radev
,
S. T.
,
Schmitt
,
M.
,
Pratz
,
V.
,
Picchini
,
U.
,
Köthe
,
U.
, and
Bürkner
,
P. -C.
,
2023
, “
JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
,”
Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence
,
Pittsburgh, PA
,
July 31–Aug. 4
, PMLR, pp.
1695
1706
.
52.
Radev
,
S. T.
,
Schmitt
,
M.
,
Schumacher
,
L.
,
Elsemüller
,
L.
,
Pratz
,
V.
,
Schälte
,
Y.
,
Köthe
,
U.
, and
Bürkner
,
P.-C.
,
2023
, “
BayesFlow: Amortized Bayesian Workflows With Neural Networks
,”
J. Open Sour. Soft.
,
8
(
89
), p.
5702
.
53.
Zhang
,
W.
,
Deng
,
L.
,
Zhang
,
L.
, and
Wu
,
D.
,
2023
, “
A Survey on Negative Transfer
,”
IEEE/CAA J. Automat. Sin.
,
10
(
2
), pp.
305
329
.
54.
Nemani
,
V.
,
Biggio
,
L.
,
Huan
,
X.
,
Hu
,
Z.
,
Fink
,
O.
,
Tran
,
A.
,
Wang
,
Y.
,
Zhang
,
X.
, and
Hu
,
C.
,
2023
, “
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
,”
Mech. Syst. Signal Process.
,
205
(
1
), p.
110796
.
You do not currently have access to this content.