Abstract

Flexure bearings provide precise, low-maintenance operation but have a limited range of motion compared to conventional bearings. Here, we introduce a new class of bearing—the metamorphic flexure bearing—that not only retains the advantages of precision, low wear, and low hysteresis over its limited flexure-bearing range but also provides an extended range of motion as needed. This extended range of motion is achieved via a position-activated transition to a conventional sliding or rolling bearing. To demonstrate the operating principles of this new class of bearing, we describe, design, assemble, and test a linear-motion metamorphic flexure bearing using three categorically different transition mechanisms: a compression spring, a constant-force spring, and a pair of magnetic catches. This design paradigm has the potential to provide various benefits (e.g., reduced wear, reduced downtime, cost savings, and increased safety) in areas ranging from precision manufacturing to healthcare robotics to biomedical implants.

References

1.
Dowson
,
D.
,
1998
,
History of Tribology
,
Professional Engineering Publishing Limited
,
London and Bury St Edmunds
.
2.
Neale
,
M. J.
,
1995
,
The Tribology Handbook
,
Butterworth-Heinemann
,
Oxford
.
3.
Luo
,
J.
,
Liu
,
M.
, and
Ma
,
L.
,
2021
, “
Origin of Friction and the New Frictionless Technology—Superlubricity: Advancements and Future Outlook
,”
Nano Energy
,
86
, p.
106092
.
4.
Meng
,
Y.
,
Xu
,
J.
,
Jin
,
Z.
,
Prakash
,
B.
, and
Hu
,
Y.
,
2020
, “
A Review of Recent Advances in Tribology
,”
Friction
,
8
(
2
), pp.
221
300
.
5.
Hutchings
,
I. M.
,
2016
, “
Leonardo Da Vinci׳s Studies of Friction
,”
Wear
,
360–361
, pp.
51
66
.
6.
Jost
,
H. P. I.
,
1966
,
Lubrication (Tribology) Education and Research, A Report on the Present Position and Industry's Needs
,
Her Majesty's Stationery Office, Department of Education and Science
,
London, UK
.
7.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley Online Library
.
8.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
9.
Panas
,
R. M.
, and
Hopkins
,
J. B.
,
2015
, “
Eliminating Underconstraint in Double Parallelogram Flexure Mechanisms
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092301
.
10.
Merriam
,
E. G.
,
Lund
,
J. M.
, and
Howell
,
L. L.
,
2016
, “
Compound Joints: Behavior and Benefits of Flexure Arrays
,”
Precis. Eng.
,
45
, pp.
79
89
.
11.
Howell
,
L. L.
,
2001
, “Introduction,”
Compliant Mechanisms
,
Wiley
,
New York
.
12.
Peterson
,
B. T.
,
Hardin
,
T. J.
,
Pomeroy
,
A. W.
,
Hopkins
,
J. B.
, and
Clites
,
T. R.
,
2024
, “
Cross-Axis Flexural Pivots in Mechatronic Applications: Stress-Based Design for Combined Tension and Bending
,”
IEEE/ASME Trans. Mechatron.
,
29
(
2
), pp.
913
923
.
13.
Breńkacz
,
Ł
,
Witanowski
,
Ł
,
Drosińska-Komor
,
M.
, and
Szewczuk-Krypa
,
N.
,
2021
, “
Research and Applications of Active Bearings: A State-of-the-Art Review
,”
Mech. Syst. Signal Process
,
151
, p.
107423
.
14.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2004
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
15.
Armentrout
,
R. W.
, and
Paquette
,
D. J.
,
1993
, “
Rotordynamic Characteristics of Flexure-Pivot Tilting-Pad Journal Bearings
,”
Tribol. Trans.
,
36
(
3
), pp.
443
451
.
16.
Cannon
,
J. R.
,
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2008
, “
Compliant Rolling-Contact Element Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
3
13
.
17.
Zirbel
,
S.
,
Curtis
,
S.
,
Bradshaw
,
R.
,
Duffield
,
L.
,
Teichert
,
G.
,
Williams
,
N.
,
Rorrer
,
R.
,
Magleby
,
S.
, and
Howell
,
L.
,
2012
, “BI-Behavioral Prosthetic Knee Enabled by a Metamorphic Compliant Mechanism,”
Advances in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
London
, pp.
401
409
.
18.
Hooke
,
R.
,
1678
,
Lectures de Potentia Restitutiva, or of Spring: Explaining the Power of Springing Bodies
,
The Royal Society
,
London
.
19.
Wahl
,
A. M.
,
1963
,
Mechanical Springs
,
McGraw-Hill
,
New York
.
20.
Wang
,
C.-Y.
, and
Watson
,
L. T.
,
1980
, “
Theory of the Constant Force Spring
,”
Trans. ASME
,
47
(
4
), pp.
956
958
.
21.
Zampoli
,
V.
, and
Hetnarski
,
R. B.
,
2024
, “
Constant Force Spring System With a Spiral: Accuracy Assessment
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031016
.
22.
Li
,
M.
, and
Cheng
,
W.
,
2018
, “
Design and Experimental Validation of a Large-Displacement Constant-Force Mechanism
,”
ASME J. Mech. Rob.
,
10
(
051007
), pp.
1
15
.
23.
Nathan
,
R.
,
1985
, “
A Constant Force Generation Mechanism
,”
Transa. ASME
,
107
(
4
), pp.
508
512
.
24.
Meng
,
H.
,
Morgan
,
J.
,
Wei
,
Q.
, and
Chen
,
C.
,
2018
, “
Design of Smart Magnetic Devices
,”
Proceedings of 25th International Workshop on Rare-Earth and Future Permanent Magnets and Their Applications (REPM 2018)
,
Beijing, China
,
Aug. 26–30, 2018
, pp.
1
6
.
25.
Jeffries
,
L.
, and
Lentink
,
D.
,
2020
, “
Design Principles and Function of Mechanical Fasteners in Nature and Technology
,”
ASME Appl. Mech. Rev.
,
72
(
5
), p.
050802
.
26.
Sclater
,
N.
, and
Chironis
,
N. P.
,
2007
, “Latching, Fastening, and Clamping Devices and Mechanisms: Detents for Stopping Mechanical Movements,”
Mechanisms and Mechanical Devices Sourcebook
,
McGraw-Hill
,
New York
, pp.
246
247
.
27.
Young
,
W. E.
,
2021
, “
An Investigation of the Cross-Spring Pivot
,”
ASME J. Appl. Mech.
,
11
(
2
), pp.
A113
A120
.
28.
Kumar
,
P.
,
Khalid
,
S.
, and
Kim
,
H. S.
,
2023
, “
Prognostics and Health Management of Rotating Machinery of Industrial Robot With Deep Learning Applications—A Review
,”
Mathematics
,
11
(
13
), p.
3008
.
29.
Kumar
,
N.
, and
Satapathy
,
R.
,
2023
, “
Bearings in Aerospace, Application, Distress, and Life: A Review
,”
J. Fail. Anal. Preven.
,
23
(
3
), pp.
915
947
.
30.
He
,
C.
,
Wu
,
Y.
, and
Chen
,
T.
,
2019
, “
Prognostics and Health Management of Life-Supporting Medical Instruments
,”
J. Comb. Optim.
,
37
(
1
), pp.
183
195
.
31.
Zhang
,
Y.
,
Chen
,
B. K.
,
Liu
,
X.
, and
Sun
,
Y.
,
2010
, “
Autonomous Robotic Pick-and-Place of Microobjects
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
200
207
.
32.
Xu
,
F.
,
Ding
,
N.
,
Li
,
N.
,
Liu
,
L.
,
Hou
,
N.
,
Xu
,
N.
,
Guo
,
W.
, et al
,
2023
, “
A Review of Bearing Failure Modes, Mechanisms and Causes
,”
Eng. Fail. Anal.
,
152
, p.
107518
.
33.
Fowler
,
R. M.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
205
215
.
34.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
35.
Farzaneh
,
A.
,
Pawar
,
N.
,
Portela
,
C. M.
, and
Hopkins
,
J. B.
,
2022
, “
Sequential Metamaterials With Alternating Poisson's Ratios
,”
Nat. Commun.
,
13
(
1
), p.
1041
.
36.
Giri
,
G. S.
,
Maddahi
,
Y.
, and
Zareinia
,
K.
,
2021
, “
An Application-Based Review of Haptics Technology
,”
Robotics
,
10
(
1
), p.
29
.
37.
Cross
,
D.
, and
Hilton
,
J.
,
2008
, “
High Speed Flywheel Based Hybrid Systems for Low Carbon Vehicles
,”
IET HEVC 2008—Hybrid and Eco-Friendly Vehicle Conference
,
Coventry, UK
,
Dec. 8–9
, pp.
1
5
.
You do not currently have access to this content.