Abstract

This work presents a method for the topology optimization of welded frame structures to minimize the manufacturing cost. The structures considered here consist of assemblies of geometric primitives such as bars and plates that are common in welded frame construction. A geometry projection technique is used to map the primitives onto a continuous density field that is subsequently used to interpolate material properties. As in density-based topology optimization techniques, the ensuing ersatz material is used to perform the structural analysis on a fixed mesh, thereby circumventing the need for re-meshing upon design changes. The distinct advantage of the representation by geometric primitives is the ease of computation of the manufacturing cost in terms of the design parameters, while the geometry projection facilitates the analysis within a continuous design region. The proposed method is demonstrated via the manufacturing-cost-minimization subject to a displacement constraint of 2D bar, 3D bar, and plate structures.

References

1.
Asadpoure
,
A.
,
Guest
,
J. K.
, and
Valdevit
,
L.
,
2015
, “
Incorporating Fabrication Cost Into Topology Optimization of Discrete Structures and Lattices
,”
Struct. Multidiscipl. Optim.
,
51
(
2
), pp.
385
396
.
2.
Liu
,
J.
,
Chen
,
Q.
,
Liang
,
X.
, and
To
,
A. C.
,
2019
, “
Manufacturing Cost Constrained Topology Optimization for Additive Manufacturing
,”
Front. Mech. Eng.
,
14
(
2
), pp.
213
221
.
3.
Ryan
,
L.
, and
Kim
,
I. Y.
,
2019
, “
A Multiobjective Topology Optimization Approach for Cost and Time Minimization in Additive Manufacturing
,”
Int. J. Numer. Methods Eng.
,
118
(
7
), pp.
371
394
.
4.
Sabiston
,
G.
, and
Kim
,
I. Y.
,
2020
, “
3D Topology Optimization for Cost and Time Minimization in Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
61
(
2
), pp.
731
748
.
5.
Ulu
,
E.
,
Huang
,
R.
,
Kara
,
L. B.
, and
Whitefoot
,
K. S.
,
2019
, “
Concurrent Structure and Process Optimization for Minimum Cost Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061701
.
6.
Zhou
,
Z.
,
Hamza
,
K.
, and
Saitou
,
K.
,
2014
, “
Decomposition Templates and Joint Morphing Operators for Genetic Algorithm Optimization of Multicomponent Structural Topology
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021004
.
7.
Zhou
,
Y.
, and
Saitou
,
K.
,
2018
, “
Gradient-Based Multi-component Topology Optimization for Stamped Sheet Metal Assemblies (MTO-S)
,”
Struct. Multidiscipl. Optim.
,
58
(
1
), pp.
83
94
.
8.
Li
,
G.
,
Xu
,
F.
,
Huang
,
X.
, and
Sun
,
G.
,
2015
, “
Topology Optimization of an Automotive Tailor-Welded Blank Door
,”
ASME J. Mech. Des.
,
137
(
5
), p.
055001
.
9.
Torii
,
A. J.
,
Lopez
,
R. H.
, and
Miguel
,
L. F. F.
,
2016
, “
Design Complexity Control in Truss Optimization
,”
Struct. Multidiscipl. Optim.
,
54
(
2
), pp.
289
299
.
10.
Zhang
,
W.
,
Zhou
,
J.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Structural Complexity Control in Topology Optimization Via Moving Morphable Component (MMC) Approach
,”
Struct. Multidiscipl. Optim.
,
56
(
3
), pp.
535
552
.
11.
Zhang
,
W.
,
Liu
,
Y.
,
Wei
,
P.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Explicit Control of Structural Complexity in Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
324
, pp.
149
169
.
12.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
13.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscipl. Optim.
,
54
(
5
), pp.
1173
1190
.
14.
Smith
,
H.
, and
Norato
,
J.
,
2022
, “
Topology Optimization of Structures Made of Fiber-Reinforced Plates
,”
Struct. Multidiscipl. Optim.
,
65
(
2
), pp.
1
18
.
15.
Smith
,
H.
, and
Norato
,
J. A.
,
2020
, “
A MATLAB Code for Topology Optimization Using the Geometry Projection Method
,”
Struct. Multidiscipl. Optim.
,
62
(
3
), pp.
1579
1594
.
16.
Smith
,
H.
, and
Norato
,
J. A.
,
2021
, “
Topology Optimization With Discrete Geometric Components Made of Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
376
, p.
113582
.
17.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9
), pp.
635
654
.
18.
Shapiro
,
V.
,
2002
, “Solid Modeling,”
Handbook of Computer Aided Geometric Design
,
G.
Farin
,
J.
Hoschek
, and
M. S.
Kim
, eds.,
Elsevier
,
Amsterdam
, pp.
473
518
.
19.
Jármai
,
K.
, and
Farkas
,
J.
,
1999
, “
Cost Calculation and Optimisation of Welded Steel Structures
,”
J. Construct. Steel Res.
,
50
(
2
), pp.
115
135
.
20.
Svanberg
,
K.
,
2007
,
MMA and GCMMA – Two Methods for Nonlinear Optimization
.
21.
Stolpe
,
M.
,
2010
, “
On Some Fundamental Properties of Structural Topology Optimization Problems
,”
Struct. Multidiscipl. Optim.
,
41
(
5
), pp.
661
670
.
22.
Rozvany
,
G. I.
,
2011
, “
On Symmetry and Non-uniqueness in Exact Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
3
), pp.
297
317
.
23.
Wein
,
F.
,
Dunning
,
P. D.
, and
Norato
,
J. A.
,
2020
, “
A Review on Feature-Mapping Methods for Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
62
(
4
), pp.
1597
1638
.
24.
Ahrens
,
James
,
Geveci
,
Berk
, and
Law
,
Charles
,
2005
, “ParaView: An End-User Tool for Large Data Visualization,”
The Visualization Handbook
, Vol.
717
,
C.
Hansen
,
C.
Johnson
, eds.,
Elsevier
,
Burlington-Oxford
, pp.
717
732
.
25.
Ayachit
,
U.
,
2015
,
The Paraview Guide: A Parallel Visualization Application
,
Kitware, Inc.
,
Clifton Park, NY
.
You do not currently have access to this content.