Abstract

The aim of this paper is to present a holistic framework to design optimized spiral bevel and hypoid gearsets with accurate finite element simulations in the loop. Starting from the basic transmission data, we first size gear and pinion blanks, and then we synthesize the basic machine-tool settings required to generate the two toothed members. This first step represents the macro-geometry design phase and its outcome is a conjugate spiral bevel or hypoid gearset. The second design phase is represented by the definition of the optimal pinion micro-geometry. This is formulated as a multi-objective optimization problem (MOOP) where the obtained optimal ease-off is guaranteed to be manufacturable. To this end, an original strategy is proposed where the search for the pinion optimal tooth surface happens in the space of the coefficients of a polynomial representation of its micro-topography. However, thanks to a fast identification algorithm that can handle all the higher-order motions, the ideal ease-off is projected onto set of machine-tool settings, thus ensuring manufacturability from the outset. It is worth remarking that the objective functions in the MOOP are evaluated by calling as a back-end solver one of the most accurate loaded tooth contact analysis software available on the market. A dedicated parallel implementation of such MOOP allows to maintain computation times within very reasonable limits. A fully worked out numerical test case clearly demonstrates that the whole procedure far surpasses the current state of the art.

References

1.
Artoni
,
A.
,
Bracci
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2009
, “
Optimization of the Loaded Contact Pattern in Hypoid Gears by Automatic Topography Modification
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011008
.
2.
Litvin
,
F. L.
, and
Gutman
,
Y.
,
1981
, “
Methods of Synthesis and Analysis for Hypoid Gear-Drives of Formate and Helixform: Part 1. Calculations for Machine Settings for Member Gear Manufacture of the Formate and Helixform Hypoid Gears
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
83
88
.
3.
Lin
,
C. Y.
,
Tsay
,
C. B.
, and
Fong
,
Z. H.
,
1997
, “
Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method
,”
Mech. Mach. Theory
,
32
(
2
), pp.
121
136
.
4.
Gosselin
,
C.
,
Nonaka
,
T.
,
Shiono
,
Y.
,
Kubo
,
A.
, and
Tatsuno
,
T.
,
1998
, “
Identification of the Machine Settings of Real Hypoid Gear Tooth Surfaces
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
429
440
.
5.
Gabiccini
,
M.
,
2009
, “
A Twist Exponential Approach to Gear Generation With General Spatial Motions
,”
Mech. Mach. Theory
,
44
(
2
), pp.
382
400
.
6.
Gabiccini
,
M.
,
Bracci
,
A.
, and
Guiggiani
,
M.
,
2010
, “
Robust Optimization of the Loaded Contact Pattern in Hypoid Gears With Uncertain Misalignments
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041010
.
7.
Argyris
,
J.
,
Fuentes
,
A.
, and
Litvin
,
F. L.
,
2002
, “
Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears
,”
Comput. Meth. Appl. Mech. Eng.
,
191
(
11–12
), pp.
1057
1095
.
8.
Wang
,
P. Y.
, and
Fong
,
Z. H.
,
2006
, “
Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears With Modified Radial Motion (MRM) Correction
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
457
467
.
9.
Achtmann
,
J.
, and
Bär
,
G.
,
2003
, “
Optimized Bearing Ellipses of Hypoid Gears
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
739
745
.
10.
Simon
,
V.
,
2005
, “
Optimal Tooth Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
646
655
.
11.
Fan
,
Q.
,
DaFoe
,
R. S.
, and
Swanger
,
J. W.
,
2008
, “
Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072601
.
12.
Advanced Numerical Solutions
,
2020
, “Transmission3D User’s Manual v. 2.54,” http://ansol.us/Products/TX3.
13.
Artoni
,
A.
,
Gabiccini
,
M.
,
Guiggiani
,
M.
, and
Kahraman
,
A.
,
2011
, “
Multi-Objective Ease-Off Optimization of Hypoid Gears for Their Efficiency, Noise, and Durability Performances
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121007
.
14.
Artoni
,
A.
,
2019
, “
A Methodology for Simulation-Based, Multiobjective Gear Design Optimization
,”
Mech. Mach. Theory
,
133
, pp.
95
111
.
15.
Wang
,
Q.
,
Zhou
,
C.
,
Gui
,
L.
, and
Fan
,
Z.
,
2018
, “
Optimization of the Loaded Contact Pattern of Spiral Bevel and Hypoid Gears Based on a Kriging Model
,”
Mech. Mach. Theory
,
122
, pp.
432
449
.
16.
Chandrasekaran
,
G.
,
Sreebalaji
,
V. S.
,
Saravanan
,
R.
, and
Maniraj
,
J.
,
2019
, “
Multiobjective Optimisation of Bevel Gear Pair Design Using NSGA-II
,”
Mater. Today: Proc.
,
16
, pp.
351
360
.
17.
Simon
,
V. V.
,
2020
, “
Multi-Objective Optimization of Hypoid Gears to Improve Operating Characteristics
,”
Mech. Mach. Theory
,
146
, p.
103727
.
18.
Ding
,
H.
,
Tang
,
J.
,
Zhou
,
Y.
,
Zhong
,
J.
, and
Wan
,
G.
,
2017
, “
A Multi-Objective Correction of Machine Settings Considering Loaded Tooth Contact Performance in Spiral Bevel Gears by Nonlinear Interval Number Optimization
,”
Mech. Mach. Theory
,
113
, pp.
85
108
.
19.
Hu
,
Z.
,
Ding
,
H.
,
Peng
,
S.
,
Tang
,
J.
, and
Tang
,
Y.
,
2019
, “
A Novel Collaborative Manufacturing Model Requiring Both Geometric and Physical Evaluations of Spiral Bevel Gears by Design for Six Sigma
,”
Mech. Mach. Theory
,
133
, pp.
625
645
.
20.
Gonzalez-Perez
,
I.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2010
, “
Analytical Determination of Basic Machine-Tool Settings for Generation of Spiral Bevel Gears From Blank Data
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101002
.
21.
Gonzalez-Perez
,
I.
,
Fuentes
,
A.
, and
Ruiz-Orzaez
,
R.
,
2015
, “
An Approach for Determination of Basic Machine-Tool Settings From Blank Data in Face-Hobbed and Face-Milled Hypoid Gears
,”
ASME J. Mech. Des.
,
137
(
9
), p.
093303
.
22.
British-Standard-Institution
,
2016
, “
BS ISO 23509:2016 Bevel and Hypoid Gear Geometry
,”
BSI Standards Publication.
23.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2008
, “
Nonlinear Identification of Machine Settings for Flank Form Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112602
.
24.
Stadtfeld
,
H. J.
,
1996
, “
Flank Modifications in Bevel Gears Using a Universal Motion Concept
,”
VDI Berichte
,
1230
, pp.
957
978
.
25.
Artoni
,
A.
,
Guiggiani
,
M.
,
Kahraman
,
A.
, and
Harianto
,
J.
,
2013
, “
Robust Optimization of Cylindrical Gear Tooth Surface Modifications Within Ranges of Torque and Misalignments
,”
ASME J. Mech. Des.
,
135
(
12
), p. 121005.
26.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi – A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Prog. Comput.
,
11
(
1
), pp.
1
36
.
27.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Prog.
,
106
(
1
), pp.
25
57
.
28.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Element Solution for a Three-Dimensional Contact Problem
,”
Int. J. Numer. Meth. Eng.
,
31
(
3
), pp.
525
545
.
29.
Stadtfeld
,
H. J.
,
2015
, “
The Basics of Gear Theory, Part 2
,”
Gear Technology
.
30.
Grabovic
,
E.
,
Ciulli
,
E.
,
Artoni
,
A.
, and
Gabiccini
,
M.
,
2022
, “
A Model for the Prediction of Frictional Power Losses in Hypoid Gears
,” In
Advances in Italian Mechanism Science. IFToMM Italy 2022.
Mechanisms and Machine Science,
V.
Niola
,
A.
Gasparetto
,
G.
Quaglia
, and
G.
Carbone
, eds., Vol.
122
,
Springer International Publishing
, pp.
219
228
.
You do not currently have access to this content.