Abstract

The reliability of the prediction model and test scheme for the positioning accuracy of the cycloid reducer is very important. This paper proposes an efficient bidirectional drive tooth contact analysis (BDTCA) model that can simultaneously analyze the forward transmission error (TE), the reverse TE, and the global lost motion (GLM) of a cycloid drive, considering a variety of manufacturing and assembly errors (including pin assembly error). The results of the BDTCA case studies show that the sensitivity of the pin radius error to the GLM considering pin assembly error is twice that of the sensitivity without considering pin assembly error. Therefore, the influence of pin assembly error on the GLM cannot be ignored. The equivalent error model for BDTCA is established based on Latin hypercube sampling and template measurement, and the positioning accuracy of 50,000 reducer virtual prototypes is predicted. According to the positioning accuracy requirements, the tolerance allocation is optimized by using the discrete particle swarm optimization algorithm, and the qualified rate after optimization is significantly improved. A bidirectional drive test (BDT) scheme is proposed according to the BDTCA model. By comparing with the traditional hysteresis curve test, the superiority of the BDT scheme and the rationality of the tolerance allocation optimization are proved. The sensitivity of the pin radius error to the GLM is obtained through a comparison BDT, which verifies the correctness of the BDTCA model considering pin assembly error. This BDTCA model provides more reliable theoretical guidance for the design and manufacture of cycloid reducers.

References

1.
Lin
,
Y.
,
Sun
,
W.
,
He
,
G.
, and
Zhang
,
Z.
,
2021
, “
Overview of Robotic Reducer Testing Technology
,”
J. Phys.: Conf. Ser.
,
2002
(
1
), p.
012025
.
2.
Ivanović
,
L.
,
Devedžić
,
G.
,
Ćuković
,
S.
, and
Mirić
,
N.
,
2012
, “
Modeling of the Meshing of Trochoidal Profiles With Clearances
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041003
.
3.
Xu
,
L. X.
,
2018
, “
A Dynamic Model to Predict the Number of Pins to Transmit Load in a Cycloidal Reducer With Assembling Clearance
,”
Proc. IMechE. Part C: J. Mech. Eng. Sci.
,
233
(
12
), pp.
4247
4269
.
4.
Artyomov
,
I. I.
,
Tchufistov
,
E. A.
, and
Tchufistov
,
O. E.
,
2019
, “
Stress Loading and Losses of Power in the Pin-Roller Gearing With Clearances
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
537
(
3
), p.
032091
.
5.
Jiang
,
N.
,
Wang
,
S.
,
Xie
,
X.
,
Yuan
,
X.
,
Yang
,
A.
, and
Zhang
,
J.
,
2022
, “
A Vectorial Modification Methodology Based on an Efficient and Accurate Cycloid Tooth Profile Model
,”
Precis. Eng.
,
73
(
1
), pp.
435
456
.
6.
Zhang
,
C.
,
Dong
,
H.
,
Wang
,
D.
, and
Cheng
,
Y.
,
2021
, “
Tolerance Synthesis for Lost Motion Requirement of Planetary Gear Train Based on a Mechanism Model
,”
Mech. Mach. Theory
,
164
(
1
), p.
104405
.
7.
Qiu
,
Z.
, and
Xue
,
J.
,
2021
, “
Review of Performance Testing of High Precision Reducers for Industrial Robots
,”
Measurement
,
183
(
1
), p.
109794
.
8.
Pham
,
A.-D.
, and
Ahn
,
H.-J.
,
2021
, “
Rigid Precision Reducers for Machining Industrial Robots
,”
Int. J. Precis. Eng. Manuf.
,
22
(
8
), pp.
1469
1486
.
9.
Pham
,
A. D.
, and
Ahn
,
H. J.
,
2018
, “
High Precision Reducers for Industrial Robots Driving 4th Industrial Revolution: State of Arts, Analysis, Design, Performance Evaluation and Perspective
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
5
(
4
), pp.
519
533
.
10.
Huang
,
X.
, and
Zhang
,
J.
,
2020
, “
Analysis of Geometric Characteristics of Cycloidal Transmission
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
751
(
1
), p.
012059
.
11.
Gorla
,
C.
,
Davoli
,
P.
,
Rosa
,
F.
,
Longoni
,
C.
,
Chiozzi
,
F.
, and
Samarani
,
A.
,
2008
, “
Theoretical and Experimental Analysis of a Cycloidal Speed Reducer
,”
ASME J. Mech. Des.
,
130
(
1
), p.
112604
.
12.
Sensinger
,
J.
,
2013
, “
Efficiency of High-Sensitivity Gear Trains, Such as Cycloid Drives
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071006
.
13.
Malhotra
,
S. K.
, and
Parameswaran
,
M. A.
,
1983
, “
Analysis of a Cycloid Speed Reducer
,”
Mech. Mach. Theory
,
18
(
6
), pp.
491
499
.
14.
Shuting
,
L.
,
2014
, “
Design and Strength Analysis Methods of the Trochoidal Gear Reducers
,”
Mech. Mach. Theory
,
81
(
1
), pp.
140
154
.
15.
Efremenkov
,
E. A.
,
Kobza
,
E. E.
, and
Efremenkova
,
S. K.
,
2015
, “
Force Analysis of Double Pitch Point Cycloid Drive With Intermediate Rolling Elements and Free Retainer
,”
Appl. Mech. Mater.
,
756
(
1
), pp.
29
34
. www.scientific.net/AMM.756.29
16.
Hsieh
,
C. F.
,
2014
, “
Dynamics Analysis of Cycloidal Speed Reducers With Pinwheel and Nonpinwheel Designs
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091008
.
17.
Blanche
,
J. G.
, and
Yang
,
D. C. H.
,
1989
, “
Cycloid Drives With Machining Tolerances
,”
ASME J. Mech. Transm. Autom. Des.
,
111
(
3
), p.
337
.
18.
Yang
,
D. C. H.
, and
Blanche
,
J. G.
,
1990
, “
Design and Application Guidelines for Cycloid Drives With Machining Tolerances
,”
Mech. Mach. Theory
,
25
(
5
), pp.
487
501
.
19.
Hidaka
,
T.
,
Wang
,
H. Y.
,
Ishida
,
T.
,
Matsumoto
,
K.
, and
and Hashimoto
,
M.
,
1994
, “
Rotational Transmission Error of K-H-V Planetary Gears With Cycloid Gear: 1st Report, Analytical Method of the Rotational Transmission Error
,”
Trans. Jpn. Soc. Mech. Eng. C
,
60
(
570
), pp.
645
653
.
20.
Li
,
X.
,
He
,
W.
,
Li
,
L.
, and
Schmidt
,
L. C.
,
2004
, “
A New Cycloid Drive With High-Load Capacity and High Efficiency
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
683
686
.
21.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
,
2007
, “
Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
413
420
.
22.
Li
,
Y. H.
,
Li
,
W.
, and
He
,
W. D.
,
2011
, “
RV Reducer Backlash Analysis Based on Robust Design
,”
Appl. Mech. Mater.
,
148–149
(
1
), pp.
418
421
. www.scientific.net/AMM.148-149.418
23.
Xu
,
L.
, and
Yang
,
Y.
,
2016
, “
Dynamic Modeling and Contact Analysis of a Cycloid-Pin Gear Mechanism With a Turning Arm Cylindrical Roller Bearing
,”
Mech. Mach. Theory
,
104
(
1
), pp.
327
349
.
24.
Li
,
X.
,
Li
,
C.
,
Wang
,
Y.
,
Chen
,
B.
, and
Lim
,
T.
,
2017
, “
Analysis of a Cycloid Speed Reducer Considering Tooth Profile Modification and Clearance-Fit Output Mechanism
,”
ASME J. Mech. Des.
,
139
(
3
), p.
033303
.
25.
Xu
,
L. X.
,
Chen
,
B. K.
, and
Li
,
C. Y.
,
2019
, “
Dynamic Modelling and Contact Analysis of Bearing-Cycloid-Pinwheel Transmission Mechanisms Used in Joint Rotate Vector Reducers
,”
Mech. Mach. Theory
,
137
(
1
), pp.
432
458
.
26.
Sun
,
X.
,
Han
,
L.
, and
Wang
,
J.
,
2019
, “
Design and Transmission Error Analysis of CBR Reducer
,”
ASME J. Mech. Des.
,
141
(
8
), p.
082301
.
27.
Sun
,
X.
, and
Han
,
L.
,
2019
, “
A New Numerical Force Analysis Method of CBR Reducer With Tooth Modification
,”
J. Phys.: Conf. Ser.
,
1187
(
3
), p.
032053
.
28.
Wang
,
H.
,
Shi
,
Z.-Y.
,
Yu
,
B.
, and
Xu
,
H.
,
2019
, “
Transmission Performance Analysis of RV Reducers Influenced by Profile Modification and Load
,”
Appl. Sci.
,
9
(
19
), p.
4099
.
29.
Wu
,
K. Y.
,
Shih
,
Y. P.
, and
Lee
,
J. J.
,
2020
, “
Kinematic Error Analysis of the Rotor Vector Gear Reducer With Machining Tolerances
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
11
), pp.
1
16
.
30.
Liu
,
C.
,
Shi
,
W.
,
Xu
,
L.
, and
Liu
,
K.
,
2021
, “
A Novel Approach to Calculating the Transmission Accuracy of a Cycloid-Pin Gear Pair Based on Error Tooth Surfaces
,”
Appl. Sci.
,
11
(
18
), p.
8671
.
31.
Li
,
X.
,
Tang
,
L.
,
He
,
H.
, and
Sun
,
L.
,
2022
, “
Design and Load Distribution Analysis of the Mismatched Cycloid-Pin Gear Pair in RV Speed Reducers
,”
Machines
,
10
(
8
), p.
672
.
32.
Li
,
L.
,
1984
, “
The Modification Manner for Tooth Profile and Analysis of Forces on the Cycloid Disk of a Cycloid Speed Reducer
,”
Chin. J. Mech. Eng.
,
22
(
1
), pp.
40
49
.
33.
Li
,
L.
,
Guan
,
T.
,
Wang
,
Z.
,
Liu
,
Y.
,
Wei
,
Y.
, and
Wan
,
C.
,
1990
, “
The Computer Aided Design of Cycloid Drive
,”
Chin. J. Mech. Eng.
,
3
(
2
), pp.
221
231
.
34.
Lin
,
W. S.
,
Shih
,
Y. P.
, and
Lee
,
J. J.
,
2014
, “
Design of a Two-Stage Cycloidal Gear Reducer With Tooth Modifications
,”
Mech. Mach. Theory
,
79
(
1
), pp.
184
197
.
35.
Ren
,
Z. Y.
,
Mao
,
S. M.
,
Guo
,
W. C.
, and
Guo
,
Z.
,
2017
, “
Tooth Modification and Dynamic Performance of the Cycloidal Drive
,”
Mech. Syst. Signal Process.
,
85
(
1
), pp.
857
866
.
36.
Li
,
A.
, and
Deng
,
2020
, “
A New Tooth Profile Modification Method of Cycloidal Gears in Precision Reducers for Robots
,”
Appl. Sci.
,
10
(
4
), p.
1266
.
37.
Huang
,
J.
,
Li
,
C.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Chen
,
B.
,
2021
, “
Transmission Error Analysis of Cycloidal Pinwheel Meshing Pair Based on Rolling–Sliding Contact
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
1
), p.
7
.
38.
Su
,
J.
,
Jiang
,
C.
,
Zhang
,
H.
, and
Nie
,
S.
,
2021
, “
Error Analysis and Compensation of Cycloid Gear Form Grinding Based on Multi-body System Error Topology Theory
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
1
), p.
14
.
39.
Han
,
L.
, and
Guo
,
F.
,
2016
, “
Global Sensitivity Analysis of Transmission Accuracy for RV-Type Cycloid-Pin Drive
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
1225
1231
.
40.
Sun
,
X.
,
Han
,
L.
,
Ma
,
K.
,
Li
,
L.
, and
Wang
,
J.
,
2018
, “
Lost Motion Analysis of CBR Reducer
,”
Mech. Mach. Theory
,
120
(
1
), pp.
89
106
.
41.
Wang
,
J.
,
Luo
,
S.
, and
Su
,
D.
,
2016
, “
Multi-Objective Optimal Design of Cycloid Speed Reducer Based on Genetic Algorithm
,”
Mech. Mach. Theory
,
102
(
1
), pp.
135
148
.
42.
Yang
,
M.
,
Zhang
,
D.
,
Cheng
,
C.
, and
Han
,
X.
,
2021
, “
Reliability-Based Design Optimization for RV Reducer With Experimental Constraint
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
2047
2064
.
43.
Sensinger
,
J. W.
,
2010
, “
Unified Approach to Cycloid Drive Profile, Stress, and Efficiency Optimization
,”
ASME J. Mech. Des.
,
132
(
2
), p.
024503
.
44.
Wang
,
C.
, and
Mao
,
K.
,
2021
, “
Design of High Power Density for RV Reducer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
6
), p.
291
.
45.
Wang
,
Y.
,
Qian
,
Q.
,
Chen
,
G.
,
Jin
,
S.
, and
Chen
,
Y.
,
2017
, “
Multi-Objective Optimization Design of Cycloid Pin Gear Planetary Reducer
,”
Adv. Mech. Eng.
,
9
(
9
), pp.
1
10
.
46.
Lin
,
K.-S.
,
Chan
,
K.-Y.
, and
Lee
,
J.-J.
,
2018
, “
Kinematic Error Analysis and Tolerance Allocation of Cycloidal Gear Reducers
,”
Mech. Mach. Theory
,
124
(
1
), pp.
73
91
.
47.
Hang
,
X. U.
,
Shi
,
Z.
,
Bo
,
Y. U.
, and
Wang
,
H.
,
2019
, “
Dynamic Measurement of the Lost Motion of Precision Reducers in Robots and the Determination of Optimal Measurement Speed
,”
J. Adv. Mech. Des. Syst. Manuf.
,
13
(
3
), p.
JAMDSM0044
.
48.
Litvin
,
F. L.
, and
Feng
,
P. H.
,
1996
, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
,
31
(
7
), pp.
891
911
.
49.
Lai
,
T.-S.
,
2006
, “
Design and Machining of the Epicycloid Planet Gear of Cycloid Drives
,”
Int. J. Adv. Manuf. Technol.
,
28
(
7–8
), pp.
665
670
.
50.
Shin
,
J. H.
, and
Kwon
,
S. M.
,
2006
, “
On the Lobe Profile Design in a Cycloid Reducer Using Instant Velocity Center
,”
Mech. Mach. Theory
,
41
(
5
), pp.
596
616
.
51.
Freudenstein
,
F.
,
Tsai
,
L. W.
, and
Maki
,
E. R.
,
1984
, “
The Generalized Oldham Coupling
,”
ASME J. Mech. Des.
,
106
(
4
), pp.
475
481
.
52.
Pham
,
A. D.
,
Tran
,
T. L.
, and
Ahn
,
H.-J.
,
2017
, “
Hysteresis Curve Analysis of a Cycloid Reducer Using Non-Linear Spring With a Dead Zone
,”
Int. J. Precis. Eng. Manuf.
,
18
(
3
), pp.
375
380
.
53.
Semjon
,
J.
,
Hajduk
,
M.
,
Jáno
,
R.
, and
Tuleja
,
P.
,
2012
, “
Procedure Selection Bearing Reducer TwinSpin for Robotic Arm
,”
Appl. Mech. Mater.
,
245
(
1
), pp.
261
266
. www.scientific.net/AMM.245.261
54.
Chen
,
B.
,
Zhong
,
H.
,
Liu
,
J.
,
Li
,
C.
, and
Fang
,
T.
,
2012
, “
Generation and Investigation of a New Cycloid Drive With Double Contact
,���
Mech. Mach. Theory
,
49
(
1
), pp.
270
283
.
55.
Sun
,
X.
,
Han
,
L.
, and
Wang
,
J.
,
2019
, “
Tooth Modification and Loaded Tooth Contact Analysis of China Bearing Reducer
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
233
(
17
), pp.
6240
6261
.
56.
Ishida
,
T.
,
Wang
,
H.
,
Hidaka
,
T.
, and
Hashimoto
,
M.
,
1994
, “
Rotational Transmission Error of K-H-V-Type Planetary Gears With Cycloid Gears: 2nd Report, Effects of Manufacturing and Assembly Errors on Rotational Transmission Error
,”
Trans. Jpn. Soc. Mech. Eng. Ser. C
,
60
(
578
), pp.
3510
3517
.
57.
Yue
,
H.
,
Wu
,
X.
,
Shi
,
Z.
,
Zhang
,
Y.
,
Ye
,
Y.
,
Zhang
,
L.
, and
Fu
,
Y.
,
2022
, “
A Comprehensive Cycloid Pin-Wheel Precision Reducer Test Platform Integrated With a New Dynamic Measurement Method of Lost Motion
,”
Metrol. Meas. Syst.
,
29
(
1
), pp.
207
229
.
58.
Wang
,
S.
,
Tan
,
J.
,
Gu
,
J.
, and
Huang
,
D.
,
2020
, “
Study on Torsional Vibration of RV Reducer Based on Time-Varying Stiffness
,”
J. Vib. Eng. Technol.
,
9
(
1
), pp.
73
84
.
59.
Zhang
,
C.
,
Dong
,
H.
,
Dong
,
B.
, and
Wang
,
D.
,
2022
, “
A Bi-Directional Drive Model for Lost Motion Behavior of Planetary Gear Train
,”
Mech. Mach. Theory
,
174
(
1
), p.
104885
.
60.
Li
,
T.
,
Tian
,
M.
,
Xu
,
H.
,
Deng
,
X.
,
An
,
X.
, and
Su
,
J.
,
2020
, “
Meshing Contact Analysis of Cycloidal-Pin Gear in RV Reducer Considering the Influence of Manufacturing Error
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
3
), p.
133
.
61.
Kreith
,
F.
, and
Goswami
,
Y.
,
2004
,
The CRC Handbook of Mechanical Engineering
,
CRC Press
,
Boca Raton, FL
.
62.
Yi
,
J.
,
Jin
,
T.
,
Zhou
,
W.
, and
Deng
,
Z.
,
2020
, “
Theoretical and Experimental Analysis of Temperature Distribution During Full Tooth Groove Form Grinding
,”
J. Manuf. Process.
,
58
(
1
), pp.
101
115
.
63.
Deng
,
H.
, and
Xu
,
Z.
,
2019
, “
Dressing Methods of Superabrasive Grinding Wheels: A Review
,”
J. Manuf. Process.
,
45
(
1
), pp.
46
69
.
64.
Jain
,
N. K.
, and
Petare
,
A. C.
,
2017
, “1.4 Review of Gear Finishing Processes,”
Comprehensive Materials Finishing
,
M. S. J.
Hashmi
, ed.,
Elsevier
,
Oxford
, pp.
93
120
.
65.
Xia
,
C.
,
Wang
,
S.
,
Wang
,
S.
,
Ma
,
C.
, and
Xu
,
K.
,
2021
, “
Geometric Error Identification and Compensation for Rotary Worktable of Gear Profile Grinding Machines Based on Single-Axis Motion Measurement and Actual Inverse Kinematic Model
,”
Mech. Mach. Theory
,
155
(
1
), p.
104042
.
66.
Su
,
J. X.
,
Zhang
,
Y. Z.
, and
Deng
,
X. Z.
,
2020
, “
Analysis and Experimental Study of Cycloid Gear Form Grinding Temperature Field
,”
Int. J. Adv. Manuf. Technol.
,
110
(
3–4
), pp.
1
17
.
67.
Wu
,
Y.
,
Zheng
,
J.
,
Chen
,
T.
, and
Li
,
L.
,
1999
, “
The Analysis Research of the Geometric Lost Motion of High Accurate RV Reducer Used in Robot
,”
J. Dalian Rail. Inst.
,
20
(
2
), pp.
24
27
.
68.
Sun
,
Y.
,
Zhao
,
X.
,
Jiang
,
F.
,
Zhao
,
L.
,
Liu
,
D.
, and
Yu
,
G.
,
2014
, “
Backlash Analysis of RV Reducer Based on Error Factor Sensitivity and Monte-Carlo Simulation
,”
Int. J. Hybrid Inf. Technol.
,
7
(
2
), pp.
283
292
.
69.
Li
,
X.
,
Chen
,
B.-k.
,
Wang
,
Y.-w.
, and
Lim
,
T. C.
,
2018
, “
Mesh Stiffness Calculation of Cycloid-Pin Gear Pair With Tooth Profile Modification and Eccentricity Error
,”
J. Cent. South Univ.
,
25
(
7
), pp.
1717
1731
.
70.
Hu
,
C.
,
Geng
,
G.
, and
Spanos
,
P. D.
,
2021
, “
Stochastic Dynamic Load-Sharing Analysis of the Closed Differential Planetary Transmission Gear System by the Monte Carlo Method
,”
Mech. Mach. Theory
,
165
(
1
), p.
104420
.
71.
Krajnik
,
P.
,
Hashimoto
,
F.
,
Karpuschewski
,
B.
,
da Silva
,
E. J.
, and
Axinte
,
D.
,
2021
, “
Grinding and Fine Finishing of Future Automotive Powertrain Components
,”
CIRP Ann.
,
70
(
2
), pp.
589
610
.
72.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
73.
Bock
,
J.
, and
Hettenhausen
,
J.
,
2012
, “
Discrete Particle Swarm Optimisation for Ontology Alignment
,”
Inf. Sci.
,
192
(
6
), pp.
152
173
.
You do not currently have access to this content.