Abstract

The space docking process must be simulated on the ground to guarantee the success of the space docking task. By synthesizing a physical simulation and a numerical simulation, a hybrid simulator can simulate the complicated contact process of space docking. A hybrid simulator consists of a robot (i.e., lower platform), upper platform, docking mechanisms, contact force and torque measurement system, and numerical simulation system. To ensure the simulation accuracy, the robot is expected to have a high structure stiffness, high structure natural frequency, and high bandwidth frequency response. However, these performances are always limited in implementation. In this paper, how the structural dynamics of the robot affect the hybrid simulation accuracy is studied. Due to the structural dynamics of the robot, the divergence and convergence of the hybrid simulation are both possible. The stability conditions are given. A distortion compensation method for the structure dynamics of the robot is proposed. The stability analysis after the compensation is given. The software emulations and experiments are used to verify the analysis and the distortion compensation method. Experiments on real docking mechanisms are given to show the applications.

References

1.
Xu
,
W.
,
Liang
,
B.
, and
Xu
,
Y.
,
2011
, “
Survey of Modeling, Planning, and Ground Verification of Space Robotic Systems
,”
Acta Astronaut.
,
68
(
11–12
), pp.
1629
1649
.
2.
Ma
,
O.
,
Flores-Abad
,
A.
, and
Boge
,
T.
,
2012
, “
Use of Industrial Robots for Hardware-in-the-Loop Simulation of Satellite Rendezvous and Docking
,”
Acta Astronaut.
,
81
(
1
), pp.
335
347
.
3.
Rems
,
F.
,
Frei
,
H.
,
Risse
,
E.-A.
, and
Burri
,
M.
,
2021
, “
10-Year Anniversary of the European Proximity Operations Simulator 2.0—Looking Back at Test Campaigns, Rendezvous Research and Facility Improvements
,”
Aerospace
,
8
(
9
), p.
235
.
4.
Ananthakrishnan
,
S.
,
Teders
,
R.
, and
Alder
,
K.
,
1996
, “
Role of Estimation in Real-Time Contact Dynamics Enhancement of Space Station Engineering Facility
,”
IEEE Robot. Automation Mag.
,
3
(
3
), pp.
20
28
.
5.
Motaghedi
,
P.
, and
Stamm
,
S.
,
2005
, “
6 DOF Testing of the Orbital Express Capture System
,”
Proc. SPIE
,
5799
, pp.
66
81
.
6.
Osaki
,
K.
,
Konno
,
A.
, and
Uchiyama
,
M.
,
2010
, “
Time Delay Compensation for a Hybrid Simulator
,”
Adv. Robot.
,
24
(
8–9
), pp.
1081
1098
.
7.
Abiko
,
S.
,
Satake
,
Y.
,
Jiang
,
X.
,
Tsujita
,
T.
, and
Uchiyama
,
M.
,
2014
, “
Time Delay Compensation Based on Coefficient of Restitution for Collision Hybrid Motion Simulator
,”
Adv. Robot.
,
28
(
17
), pp.
1177
1188
.
8.
Golubev
,
Y. F.
, and
Yaskevich
,
A. V.
,
2020
, “
Hybrid Simulation of Spacecraft Berthing
,”
J. Comput. Syst. Sci. Int.
,
59
(
4
), pp.
609
621
.
9.
Insam
,
C.
,
Peiris
,
L. D. H.
, and
Rixen
,
D. J.
,
2021
, “
Normalized Passivity Control for Hardware-in-the-Loop With Contact
,”
Int. J. Dyn. Control
,
9
(
4
), pp.
1471
1477
.
10.
Sazawal
,
P.
,
Choukroun
,
D.
,
Benninghoff
,
H.
, and
Gill
,
E.
,
2019
, “
Three-Dimensional Modeling and Time-Delay Stability Analysis for Robotics Docking Simulation
,”
Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng.
,
233
(
14
), pp.
5438
5455
.
11.
Qi
,
C. K.
,
Gao
,
F.
,
Zhao
,
X. C.
,
Ren
,
A. Y.
,
Wang
,
Q.
,
Sun
,
Q.
,
Hu
,
Y.
, and
Qiao
,
L.
,
2016
, “
Smith Predictor Based Delay Compensation for a Hardware-in-the-Loop Docking Simulator
,”
Mechatronics
,
36
, pp.
63
76
.
12.
Zebenay
,
M.
,
Boge
,
T.
,
Krenn
,
R.
, and
Choukroun
,
D.
,
2015
, “
Analytical and Experimental Stability Investigation of a Hardware-in-the-Loop Satellite Docking Simulator
,”
Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng.
,
229
(
4
), pp.
666
681
.
13.
Qi
,
C. K.
,
Ren
,
A. Y.
,
Gao
,
F.
,
Zhao
,
X. C.
,
Wang
,
Q.
, and
Sun
,
Q.
,
2017
, “
Compensation of Velocity Divergence Caused by Dynamic Response for Hardware-in-the-Loop Docking Simulator
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
422
432
.
14.
Shimoji
,
H.
,
Inoue
,
M.
,
Tsuchiya
,
K.
,
Niomiya
,
K.
,
Nakatani
,
I.
, and
Kawaguchi
,
J.
,
1991
, “
Simulation System for a Space Robot Using Six-Axis Servos
,”
Adv. Robot.
,
6
(
2
), pp.
179
196
.
15.
De Stefano
,
M.
,
Balachandran
,
R.
, and
Secchi
,
C.
,
2020
, “
A Passivity-Based Approach for Simulating Satellite Dynamics With Robots: Discrete-Time Integration and Time-Delay Compensation
,”
IEEE Trans. Robot.
,
36
(
1
), pp.
189
203
.
16.
Chang
,
T.
,
Cong
,
D.
,
Ye
,
Z.
, and
Han
,
J.
,
2007
, “
Time Problems in HIL Simulation for on-Orbit Docking and Compensation
,”
Proceedings of the 2nd IEEE Conference on Industrial Electronics and Applications
,
Harbin, China
,
May 23–25
, pp.
841
846
.
17.
Qi
,
C. K.
,
Gao
,
F.
,
Zhao
,
X. C.
,
Ren
,
A. Y.
, and
Wang
,
Q.
,
2017
, “
A Force Compensation Approach Towards Divergence of Hardware-in-the-Loop Contact Simulation System for Damped Elastic Contact
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
2933
2943
.
18.
Wang
,
Q.
,
Qi
,
C. K.
,
Gao
,
F.
,
Zhao
,
X. C.
,
Ren
,
A. Y.
, and
Sun
,
Q.
,
2019
, “
Force Based Delay Compensation for Hardware-in-the-Loop Simulation Divergence of 6-dof Space Contact
,”
Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng.
,
233
(
1
), pp.
151
165
.
19.
Qi
,
C.
,
Zhao
,
X.
,
Gao
,
F.
,
Ren
,
A.
, and
Wang
,
Q.
,
2017
, “
Low-Order Model Based Divergence Compensation for Hardware-in-the-Loop Space Discrete Contact
,”
J. Intell. Robot. Syst.
,
86
(
1
), pp.
81
93
.
20.
Qi
,
C. K.
,
Gao
,
F.
,
Zhao
,
X. C.
,
Wang
,
Q.
, and
Sun
,
Q.
,
2018
, “
Distortion Compensation for a Robotic Hardware-in-the-Loop Contact Simulator
,”
IEEE Trans. Control Syst. Technol.
,
26
(
4
), pp.
1170
1179
.
21.
Qi
,
C. K.
,
Wang
,
W. L.
,
Li
,
D. J.
,
Hu
,
Y.
, and
Gao
,
F.
,
2021
, “
Convergence Compensation for Space Contact Semiphysical Simulator Based on Mechanical Structure Dynamics
,”
J. Aerospace Eng.
,
34
(
5
), p.
04021066
.
22.
Gao
,
F.
,
Qi
,
C. K.
,
Ren
,
A. Y.
,
Zhao
,
X. C.
, et al
,
2016
, “
Hardware-in-the-Loop Simulation for the Contact Dynamic Process of Flying Objects in Space
,”
Sci. China Technol. Sci.
,
59
(
8
), pp.
1167
1175
.
23.
Qi
,
C. K.
,
Li
,
D. J.
,
Ma
,
W.
,
Wei
,
Q. Q.
,
Zhang
,
W. M.
,
Wang
,
W. L.
,
Hu
,
Y.
, and
Gao
,
F.
,
2022
, “
Distributed Delay Compensation for a Hybrid Simulation System of Space Manipulator Capture
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
2367
2378
.
24.
Cao
,
R.
,
Gao
,
F.
,
Zhang
,
Y.
, and
Pan
,
D.
,
2015
, “
A Key Point Dimensional Design Method of a 6-DOF Parallel Manipulator for a Given Workspace
,”
Mech. Mach. Theory
,
85
, pp.
1
13
.
25.
Hu
,
Y.
,
Gao
,
F.
,
Cao
,
R.
, and
Zhao
,
X. C.
,
2017
, “
The Method of Modeling of a Novel 6-dof Parallel Manipulator as a Generalized Virtual Road Vehicle for on-Board Equipment Test
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
,
Paper No. DETC2017-67491
.
26.
Ogata
,
K.
,
2009
,
Modern Control Engineering—Fifth Edition
,
Prentice Hall
,
Boston, MA
.
You do not currently have access to this content.