Abstract

A novel hybrid six-bar mechanism with non-circular gear constraints and its optimal synthesis method for complex multi-pose rigid body guidance tasks are proposed. An innovative optimization module is proposed to optimize the non-circularity and smoothness of non-circular gear pitch curves. The optimization synthesis of this mechanism is divided into two steps. The first step is to conduct multi-objective constraint optimization with pose error and non-circular gear pitch curve as optimization objectives to obtain the required diversified non-inferior solution set. Second, a set of solutions are selected from the solution set to construct the optimization function of non-circular gear pitch curves. The non-circularity and smoothness of the pitch curve are optimized to the maximum extent, and the pose change is ensured to be small. Finally, the multi-pose picking and planting of vegetable pot seedlings were realized using the proposed mechanism and optimization synthesis method. The final optimization design results show that the error between the actual pose and the required pose of the compact hybrid mechanism is small. The optimization effect of non-circularity and smoothness of non-circular gear pitch curves is pronounced. The effectiveness of the mechanism is verified via kinematic simulation.

References

1.
Gatti
,
G.
, and
Mundo
,
D.
,
2007
, “
Optimal Synthesis of Six-Bar Cammed-Linkages for Exact Rigid-Body Guidance
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1069
1081
.
2.
Levitskii
,
N. I.
,
Sarkissyan
,
Y. L.
, and
Gekchian
,
G. S.
,
1972
, “
Optimum Synthesis of Four-Bar Function Generating Mechanism
,”
Mech. Mach. Theory
,
7
(
4
), pp.
387
398
.
3.
Simionescu
,
P. A.
, and
Beale
,
D.
,
2002
, “
Optimum Synthesis of the Four-Bar Function Generator in Its Symmetric Embodiment: The Ackermann Steering Linkage
,”
Mech. Mach. Theory
,
37
(
12
), pp.
1487
1504
.
4.
Li
,
X.
,
Wei
,
S.
,
Liao
,
Q.
, and
Zhang
,
Y.
,
2016
, “
A Novel Analytical Method for Function Generation Synthesis of Planar Four-Bar Linkages
,”
Mech. Mach. Theory
,
101
(
1
), pp.
222
235
.
5.
Hayes
,
J. M. D.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2018
, “
Input-Output Equation for Planar Four-Bar Linkages
,”
ARK 2018 – 16th International Symposium on Advances in Robot Kinematics
,
Bologna, Italy
,
July 1–5
, pp.
12
19
.
6.
Pickard
,
J. K.
,
Carretero
,
J. A.
, and
Merlet
,
J.-P.
,
2020
, “
Appropriate Synthesis of the Four-Bar Linkage
,”
Mech. Mach. Theory
,
153
(
1
), p. 103695.
7.
Soh
,
G. S.
, and
McCarthy
,
J. M.
,
2008
, “
The Synthesis of Six-Bar Linkages as Constrained Planar 3R Chains
,”
Mech. Mach. Theory
,
43
(
2
), pp.
160
170
.
8.
Bai
,
S.
,
Wang
,
D.
, and
Dong
,
H.
,
2016
, “
A Unified Formulation for Dimensional Synthesis of Stephenson Linkages
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041009
.
9.
Nafees
,
K.
, and
Mohammad
,
A.
,
2016
, “
Dimensional Synthesis of Six-Bar Stephenson II Linkage for Fifteen Precision Points Path Generation
,”
Perspect. Sci.
,
8
(
1
), pp.
485
487
.
10.
Chung
,
W.-Y.
,
2017
, “
Synthesis of Two Four-Bar in Series for Body Guidance
,”
3rd International Conference on Mechatronics and Mechanical Engineering, ICMME 2016
,
Shanghai, China
,
Oct. 21–23
,
p. 04006
.
11.
Chen
,
C.
, and
Angeles
,
J.
,
2008
, “
A Novel Family of Linkages for Advanced Motion Synthesis
,”
Mech. Mach. Theory
,
43
(
7
), pp.
882
890
.
12.
Dooner
,
D. B.
,
2001
, “
Function Generation Utilizing an Eight-Link Mechanism and Optimized Non-Circular Gear Elements With Application to Automotive Steering
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
215
(
7
), pp.
847
857
.
13.
Mckinley
,
J. R.
,
Crane III
,
C.
,
Dooner
,
D. B.
, and
Kammath
,
J.-F.
,
2005
, “
Planar Motion Generation Incorporating a 6-Link Mechanism and Non-Circular Elements
,”
DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
393
403
.
14.
Mundo
,
D.
,
Gatti
,
G.
, and
Dooner
,
D. B.
,
2009
, “
Optimized Five-Bar Linkages With Non-Circular Gears for Exact Path Generation
,”
Mech. Mach. Theory
,
44
(
4
), pp.
751
760
.
15.
Yu
,
G.
,
Tong
,
Z.
,
Sun
,
L.
,
Tong
,
J.
, and
Zhao
,
X.
,
2019
, “
Novel Gear Transmission Mechanism With Twice Unequal Amplitude Transmission Ratio
,”
ASME J. Mech. Des.
,
141
(
9
), p.
092304
.
16.
Zhao
,
X.
,
Chu
,
M.
,
Ma
,
X.
,
Dai
,
L.
,
Ye
,
B.
, and
Chen
,
J.
,
2018
, “
Research on Design Method of Non-Circular Planetary Gear Train Transplanting Mechanism Based on Precise Poses and Trajectory Optimization
,”
Adv. Mech. Eng.
,
10
(
12
), pp.
1
12
.
17.
Bai
,
S.
,
Li
,
Z.
, and
Li
,
R.
,
2020
, “
Exact Synthesis and Input–Output Analysis of 1-Dof Planar Linkages for Visiting 10 Poses
,”
Mech. Mach. Theory
,
143
(
1
), pp.
1
15
.
18.
Cui
,
G.
, and
Han
,
J.
,
2016
, “
The Solution Region-Based Synthesis Methodology for a 1-DOF Eight-Bar Linkage
,”
Mech. Mach. Theory
,
98
(
1
), pp.
231
241
.
19.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li
,
B.
, and
Chen
,
D.
,
2016
, “
Linkage Model and Manufacturing Process of Shaping Non-Circular Gears
,”
Mech. Mach. Theory
,
96
(
1
), pp.
192
212
.
20.
Zheng
,
F.
,
Xinghui
,
H.
,
Hua
,
L.
,
Zhang
,
M.
, and
Zhang
,
W.
,
2018
, “
Design and Manufacture of New Type of Non-Circular Cylindrical Gear Generated by Face-Milling Method
,”
Mech. Mach. Theory
,
122
(
1
), pp.
326
346
.
21.
Chen
,
J.
,
Ye
,
J.
,
Zhao
,
H.
,
Xu
,
G.
, and
Wang
,
Y.
,
2014
, “
Concavity and Tooth Undercutting of High-Order Deformed Eccentric Conjugate Non-Circular Gears
,”
Zhongguo Jixie Gongcheng/China Mech. Eng.
,
25
(
22
), pp.
3028
3033
.
22.
Sun
,
L.
,
Xu
,
Y.
,
Huang
,
H.
,
Wang
,
Z.
,
Zhang
,
G.
, and
Wu
,
C.
,
2018
, “
Solution and Analysis of Transplanting Mechanism With Planetary Gear Train Based on Convexity of Pitch Curve | 基于节曲线凸性判别的行星轮系移栽机构解析
,”
Nongye Jixie Xuebao/Transactions Chinese Soc. Agric. Mach.
,
49
(
12
), pp.
83
92
.
23.
Wang
,
L.
,
Sun
,
L.
,
Huang
,
H.
,
Yu
,
Y.
, and
Yu
,
G.
,
2021
, “
Design of Clamping-Pot-Type Planetary Gear Train Transplanting Mechanism for Rice Wide-Narrow-Row Planting
,”
Int. J. Agric. Biol. Eng.
,
14
(
2
), pp.
62
71
.
24.
Bai
,
S.
,
2017
, “
Geometric Analysis of Coupler-Link Mobility and Circuits for Planar Four-Bar Linkages
,”
Mech. Mach. Theory
,
118
(
1
), pp.
53
64
.
25.
Zhou
,
H.
, and
Cheung
,
E. H. M.
,
2004
, “
Adjustable Four-Bar Linkages for Multi-Phase Motion Generation
,”
Mech. Mach. Theory
,
39
(
3
), pp.
261
279
.
26.
Addomine
,
M.
,
Figliolini
,
G.
, and
Pennestrì
,
E.
,
2018
, “
A Landmark in the History of Non-Circular Gears Design: The Mechanical Masterpiece of Dondi’s Astrarium
,”
Mech. Mach. Theory
,
122
(
1
), pp.
219
232
.
27.
Tong
,
Z.
,
Yu
,
G.
,
Zhao
,
X.
,
Liu
,
P.
, and
Ye
,
B.
,
2020
, “
Design of Vegetable Pot Seedling PickUp Mechanism With Planetary Gear Train
,”
Chinese J. Mech. Eng. (English Ed.)
,
33
(
1
), pp.
95
105
.
28.
Huang
,
Y.
, and
Fei
,
M.
,
2018
, “
Motion Planning of Robot Manipulator Based on Improved NSGA-II
,”
Int. J. Control. Autom. Syst.
,
16
(
4
), pp.
1878
1886
.
29.
Bouchekara
,
H. R. E. H.
,
Shahriar
,
M. S.
,
Javaid
,
M. S.
,
Sha’aban
,
Y. A.
,
Zellagui
,
M.
, and
Bentouati
,
B.
,
2021
, “
A Variable Neighborhood Search Algorithm for Optimal Protection Coordination of Power Systems
,”
Soft Comput.
,
25
(
16
), pp.
10863
10883
.
30.
Hansen
,
P.
,
Mladenović
,
N.
, and
Moreno Pérez
,
J. A.
,
2008
, “
Variable Neighborhood Search
,”
Eur. J. Oper. Res.
,
191
(
3
), pp.
593
595
.
You do not currently have access to this content.