Abstract

Mobility prediction of off-road autonomous ground vehicles (AGV) in uncertain environments is essential for their model-based mission planning, especially in the early design stage. While surrogate modeling methods have been developed to overcome the computational challenge in simulation-based mobility prediction, it is very challenging for a single surrogate model to accurately capture the complicated vehicle dynamics. With a focus on vertical acceleration of an AGV under off-road conditions, this article proposes a surrogate modeling approach for AGV mobility prediction using a dynamic ensemble of nonlinear autoregressive models with exogenous inputs (NARX) over time. Synthetic vehicle mobility data of an AGV are first collected using a limited number of high-fidelity simulations. The data are then partitioned into different segments using a variational Gaussian mixture model to represent different vehicle dynamic behaviors. Based on the partitioned data, multiple surrogate models are constructed under the NARX framework with different numbers of lags. The NARX models are then assembled together dynamically over time to predict the mobility of the AGV under new conditions. A case study demonstrates the advantages of the proposed method over the classical NARX models for AGV mobility prediction.

References

1.
Li
,
M.
,
Song
,
X.
,
Cao
,
H.
, and
Huang
,
Z.
,
2019
, “
Shared Steering Control Combined With Driving Intention for Vehicle Obstacle Avoidance
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
233
(
11
), pp.
2791
2808
.
2.
Wang
,
B.
,
Gong
,
J.
, and
Chen
,
H.
,
2019
, “
Motion Primitives Representation, Extraction and Connection for Automated Vehicle Motion Planning Applications
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
9
), pp.
3931
3945
.
3.
Liu
,
Q.
,
Zhao
,
L.
,
Tan
,
Z.
, and
Chen
,
W.
,
2017
, “
Global Path Planning for Autonomous Vehicles in Off-Road Environment via an A-Star Algorithm
,”
Int. J. Veh. Auton. Syst.
,
13
(
4
), pp.
330
339
.
4.
Oksanen
,
T.
, and
Visala
,
A.
,
2009
, “
Coverage Path Planning Algorithms for Agricultural Field Machines
,”
J. Field Rob.
,
26
(
8
), pp.
651
668
.
5.
Korlath
,
G.
,
2007
, “
Mobility Analysis of Off-Road Vehicles: Benefits for Development, Procurement and Operation
,”
J. Terramech.
,
44
(
5
), pp.
383
393
.
6.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2017
, “
The Next Generation NATO Reference Mobility Model Development
,”
J. Terramech.
,
73
(
1
), pp.
49
60
.
7.
Singh
,
A.
,
2012
, “
Mobility of Military Vehicles at TARDEC
,”
Army Tank Automotive Research Development and Engineering Center
, Warren MI.
8.
Ciobotaru
,
T.
,
2009
, “
Semi-Empiric Algorithm for Assessment of the Vehicle Mobility
,”
Leonardo Electron. J. Pract. Technol.
,
8
(
15
), pp.
19
30
.
9.
Bradbury
,
M.
,
Dasch
,
J.
,
Gonzalez
,
R.
,
Hodges
,
H.
,
Jain
,
A.
,
Iagnemma
,
K.
,
Letherwood
,
M.
,
Mccullough
,
M.
,
Priddy
,
J.
, and
And Wojtysiak
,
B.
,
2016
, “
Next-Generation NATO Reference Mobility Model (NG-NRMM)
,”
Tank Automotive Research, Development and Engineering Center (TARDEC)
, Warren, United States.
10.
McCullough
,
M.
,
Jayakumar
,
P.
,
Dasch
,
J.
, and
Gorsich
,
D.
,
2016
, “
Developing the Next Generation NATO Reference Mobility Model
,”
US Army TARDEC, Warren
, MI.
11.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
A High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramech.
,
72
(
1
), pp.
39
54
.
12.
Laughery
,
S.
,
Gerhart
,
G.
, and
Goetz
,
R.
,
1990
, “
Bekker’s Terramechanics Model for Off-Road Vehicle Research
,” TACOM Research Development and Engineering Center, Warren, MI.
13.
Hetherington
,
J.
,
2001
, “
The Applicability of the MMP Concept in Specifying Off-Road Mobility for Wheeled and Tracked Vehicles
,”
J. Terramech.
,
38
(
2
), pp.
63
70
.
14.
Senatore
,
C.
, and
Sandu
,
C.
,
2011
, “
Torque Distribution Influence on Tractive Efficiency and Mobility of Off-Road Wheeled Vehicles
,”
J. Terramech.
,
48
(
5
), pp.
372
383
.
15.
Serban
,
R.
,
Olsen
,
N.
,
Negrut
,
D.
,
Recuero
,
A.
, and
Jayakumar
,
P.
,
2017
, “
A Co-Simulation Framework for High-Performance, High-Fidelity Simulation of Ground Vehicle-Terrain Interaction
,”
Proceedings of the Conference NATO AVT-265 Specialists’ Meeting
,
Vilnius, Lithuania
,
May 12–19
, Vol. 23, p.
24
.
16.
González
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Stochastic Mobility Prediction of Ground Vehicles Over Large Spatial Regions: A Geostatistical Approach
,”
Auton. Robots
,
41
(
2
), pp.
311
331
.
17.
Gonzalez
,
R.
,
Jayakumar
,
P.
, and
Iagnemma
,
K.
,
2017
, “
Generation of Stochastic Mobility Maps for Large-Scale Route Planning of Ground Vehicles: A Case Study
,”
J. Terramech.
,
69
(
1
), pp.
1
11
.
18.
Choi
,
K.
,
Jayakumar
,
P.
,
Funk
,
M.
,
Gaul
,
N.
, and
Wasfy
,
T. M.
,
2019
, “
Framework of Reliability-Based Stochastic Mobility Map for Next Generation Nato Reference Mobility Model
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021012
.
19.
Liu
,
Y.
,
Jiang
,
C.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Jayakumar
,
P.
,
Fu
,
Y.
,
Majcher
,
M.
, and
Hu
,
Z.
,
2021
, “
Simulation-Based Mission Mobility Reliability Analysis of off-Road Ground Vehicles
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031701
.
20.
Hsu
,
T.-M.
,
Wang
,
C.-H.
, and
Chen
,
Y.-R.
,
2018
, “
End-to-End Deep Learning for Autonomous Longitudinal and Lateral Control Based on Vehicle Dynamics
,”
Proceedings of the 2018 International Conference on Artificial Intelligence and Virtual Reality
,
Nov.,
pp.
111
114
.
21.
Ye
,
Y.
,
Huang
,
P.
,
Sun
,
Y.
, and
Shi
,
D.
,
2021
, “
MBSNet: A Deep Learning Model for Multibody Dynamics Simulation and Its Application to a Vehicle-Track System
,”
Mech. Syst. Signal Process
,
157
(
1
), p.
107716
.
22.
Pan
,
Y.
,
Nie
,
X.
,
Dai
,
W.
,
Xu
,
F.
, and
Li
,
Z.
,
2021
, “
A Deep Neural Network-Based Nonlinear Dynamics Model for the Prediction of Lateral-Longitudinal Vehicle Dynamics
,”
Nonlienar Dyn.
,
1
(
1
). DOI: 10.21203/rs.3.rs-629814/v1
23.
Paparusso
,
L.
,
Melzi
,
S.
, and
Braghin
,
F.
,
2021
, “
Real-Time Forecasting of Driver-Vehicle Dynamics on 3D Roads: A Deep-Learning Framework Leveraging Bayesian Optimization
,”
arXiv preprint
. https://arxiv.org/abs/2103.03825v3
24.
Close
,
C. M.
,
Frederick
,
D. K.
, and
Newell
,
J. C.
,
2001
,
Modeling and Analysis of Dynamic Systems
,
John Wiley & Sons
,
New York
.
25.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
,
New York
.
26.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2015
, “
Chrono: An Open Source Multi-Physics Dynamics Engine
,”
Proceedings of the International Conference on High Performance Computing in Science and Engineering
,
Czech Republic
,
May 25–28
, Springer, Cham, pp.
19
49
.
27.
Liu
,
Y.
,
Jiang
,
C.
,
Zhang
,
X.
,
Mourelatos
,
Z. P.
,
Barthlow
,
D.
,
Gorsich
,
D.
,
Singh
,
A.
, and
Hu
,
Z.
,
2022
, “
Reliability-Based Multi-Vehicle Path Planning Under Uncertainty Using a Bio-Inspired Approach
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091701
.
28.
Mazhar
,
H.
,
Heyn
,
T.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Seidl
,
A.
,
Bartholomew
,
A.
,
Tasora
,
A.
, and
Negrut
,
D.
,
2013
, “
Chrono: A Parallel Multi-Physics Library for Rigid-Body, Flexible-Body, and Fluid Dynamics
,”
Mech. Sci.
,
4
(
1
), pp.
49
64
.
29.
Huang
,
S.
,
Mahadevan
,
S.
, and
Rebba
,
R.
,
2007
, “
Collocation-Based Stochastic Finite Element Analysis for Random Field Problems
,”
Probabilistic Eng. Mech.
,
22
(
2
), pp.
194
205
.
30.
Zhang
,
J.
, and
Ellingwood
,
B.
,
1994
, “
Orthogonal Series Expansions of Random Fields in Reliability Analysis
,”
J. Eng. Mech.
,
120
(
12
), pp.
2660
2677
.
31.
Sandu
,
C.
,
Sandu
,
A.
, and
Li
,
L.
,
2005
, “
Stochastic Modeling of Terrain Profiles and Soil Parameters
,”
SAE Int. J. Commer. Veh.
, 1, pp.
211
220
.
32.
Worden
,
K.
,
Becker
,
W. E.
,
Rogers
,
T. J.
, and
Cross
,
E. J.
,
2018
, “
On the Confidence Bounds of Gaussian Process NARX Models and Their Higher-Order Frequency Response Functions
,”
Mech. Syst. Signal Process
,
104
(
1
), pp.
188
223
.
33.
Khalid
,
A.
,
Sundararajan
,
A.
, and
Sarwat
,
A. I.
,
2019
, “
An Arima-Narx Model to Predict Li-Ion State of Charge for Unknown Charge/Discharge Rates
,”
Proceedings of the 2019 IEEE Transportation Electrification Conference (ITEC-India)
,
Bengaluru, India
,
Dec. 17–19
, IEEE, pp.
1
4
.
34.
Li
,
M.
, and
Wang
,
Z.
,
2022
, “
LSTM-Augmented Deep Networks for Time-Variant Reliability Assessment of Dynamic Systems
,”
Reliab. Eng. Syst. Saf.
,
217
(
1
), p.
108014
.
35.
Siegelmann
,
H. T.
,
Horne
,
B. G.
, and
Giles
,
C. L.
,
1997
, “
Computational Capabilities of Recurrent NARX Neural Networks
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
27
(
2
), pp.
208
215
.
36.
Sum
,
J.
,
Kan
,
W.-K.
, and
Young
,
G. H.
,
1999
, “
A Note on the Equivalence of NARX and RNN
,”
Neural Comput. Appl.
,
8
(
1
), pp.
33
39
.
37.
Menezes
,
J. M. P.
, Jr
, and
Barreto
,
G. A.
,
2008
, “
Long-Term Time Series Prediction With the NARX Network: An Empirical Evaluation
,”
Neurocomputing
,
71
(
16–18
), pp.
3335
3343
.
38.
Olah
,
C.
,
2015
, “
Understanding LSTM Networks
,” http://colah.github.io/posts/2015-08-Understanding-LSTMs/, Accessed February 2022.
39.
Zhang
,
X.
, and
Mahadevan
,
S.
,
2020
, “
Bayesian Neural Networks for Flight Trajectory Prediction and Safety Assessment
,”
Decis. Support Syst.
,
131
(
1
), p.
113246
.
40.
Xiong
,
Y.
,
Chen
,
W.
,
Apley
,
D.
, and
Ding
,
X.
,
2007
, “
A Non-Stationary Covariance-Based Kriging Method for Metamodelling in Engineering Design
,”
Int. J. Numer. Methods Eng.
,
71
(
6
), pp.
733
756
.
41.
Chung
,
J.
,
Ahn
,
S.
, and
Bengio
,
Y.
,
2016
, “
Hierarchical Multiscale Recurrent Neural Networks
,”
arXiv preprint
. https://arxiv.org/abs/1609.01704v7
42.
Hu
,
Z.
, and
Mourelatos
,
Z.
,
2018
, “
Efficient Global Surrogate Modeling Based on Multi-Layer Sampling
,”
SAE Int. J. Mater. Manuf.
,
11
(
4
), pp.
385
400
.
43.
Ghazali
,
R.
,
Hussain
,
A. J.
,
Nawi
,
N. M.
, and
Mohamad
,
B.
,
2009
, “
Non-Stationary and Stationary Prediction of Financial Time Series Using Dynamic Ridge Polynomial Neural Network
,”
Neurocomputing
,
72
(
10–12
), pp.
2359
2367
.
44.
Reynolds
,
D. A.
,
2009
, “
Gaussian Mixture Models
,”
Encycl. Biometrics
,
741
(
1
), pp.
659
663
.
45.
Papadimitriou
,
D. I.
,
Mourelatos
,
Z. P.
, and
Hu
,
Z.
,
2019
, “
Reliability Analysis Using Second-Order Saddlepoint Approximation and Mixture Distributions
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021401
.
46.
Murty
,
M. N.
, and
Devi
,
V. S.
,
2015
,
Introduction to Pattern Recognition and Machine Learning
,
World Scientific
,
Singapore
.
47.
Blei
,
D. M.
,
Griffiths
,
T. L.
,
Jordan
,
M. I.
, and
Tenenbaum
,
J. B.
,
2003
, “
Hierarchical Topic Models and the Nested Chinese Restaurant Process
,”
Proceedings of the NIPS
,
Vancouver, BC, Canada
,
Dec. 8–13
.
48.
Escobar
,
M. D.
, and
West
,
M.
,
1995
, “
Bayesian Density Estimation and Inference Using Mixtures
,”
J. Am. Stat. Assoc.
,
90
(
430
), pp.
577
588
.
49.
Murphy
,
K. P.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.