Abstract

This article presents and illustrates a functional modeling-based representation of digital twinning (DT) architectures. We provide a detailed review of the existing architectures and frameworks intended for use on product digital twins. We identified gaps in the prior work on architectures and frameworks for DT of products, product families, and systems. We identified a need for robust representation schemes that enable product-specific synthesis and analysis of DTs, which the existing DT architecture representations do not offer. We integrated the efforts of the researchers on DT architectures in our functional modeling-based architecture representation approach. We included selected attributes of each reviewed framework and addressed the identified gaps through our functional modeling-based DT architecture representation. The proposed architecture representation approach opens up new avenues of research and can potentially help improve the design process for product DT. This paper illustrates our approach through an instructional example of a COVID-19 testing breathalyzer kiosk designed as a rapid response to the COVID-19 pandemic.

References

1.
Lasi
,
H.
,
Fettke
,
P.
,
Kemper
,
H. G.
,
Feld
,
T.
, and
Hoffmann
,
M.
,
2014
, “
Industry 4.0
,”
Bus. Inf. Syst. Eng
,
6
(
4
), pp.
239
242
.
2.
Kritzinger
,
W.
,
Karner
,
M.
,
Traar
,
G.
,
Henjes
,
J.
, and
Sihn
,
W.
,
2018
, “
Digital Twin in Manufacturing: A Categorical Literature Review and Classification
,”
IFAC-PapersOnLine
,
51
(
11
), pp.
1016
1022
.
3.
Lu
,
Y.
,
Liu
,
C.
,
Kai Wang
,
K. I.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Robot. Comput. Integr. Manuf.
,
61
, p.
101837
.
4.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Procedia Manuf.
,
11
, pp.
939
948
.
5.
Zhuang
,
C.
,
Liu
,
J.
, and
Xiong
,
H.
,
2018
, “
Digital Twin-Based Smart Production Management and Control Framework for the Complex Product Assembly Shop-Floor
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
1149
1163
.
6.
Singh
,
V.
, and
Willcox
,
K. E.
,
2018
, “
Engineering Design With Digital Thread
,”
AIAA J.
,
56
(
11
), pp.
4515
4528
.
7.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C. Y.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
.
8.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Michael Spottswood
,
S.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
.
9.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.
10.
Bhasin
,
D.
,
Behmer
,
S. T.
, and
McAdams
,
D. A.
,
2021
, “
Fostering Function-Sharing Using Bioinspired Product Architecture
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061401
.
11.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
12.
Rosen
,
R.
,
Von Wichert
,
G.
,
Lo
,
G.
, and
Bettenhausen
,
K. D.
,
2015
, “
About the Importance of Autonomy and Digital Twins for the Future of Manufacturing
,”
IFAC-PapersOnLine
,
48
(
3
), pp.
567
572
.
13.
General Electric Predix Platform
, https://www.ge.com/digital/iiot-platform, Accessed April 25, 2022.
14.
Microsoft Azure Digital Twins
, https://azure.microsoft.com, Accessed April 25, 2022.
15.
Windchill, PTC
, https://www.ptc.com/en/products/windchill, Accessed April 25, 2022.
17.
Overton
,
J.
, and
Brigham
,
J.-C.
,
2017
, “The Digital Twin: Data Driven Simulations Innovate the Manufacturing Process,” White paper, May 26, 2017.
18.
Damjanovic-Behrendt
,
V.
, and
Behrendt
,
W.
,
2019
, “
An Open Source Approach to the Design and Implementation of Digital Twins for Smart Manufacturing
,”
Int. J. Comput. Integr. Manuf.
,
32
(
4–5
), pp.
366
384
.
19.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
.
20.
Bukkapatnam
,
S. T. S.
,
Afrin
,
K.
,
Dave
,
D.
, and
Kumara
,
S. R. T.
,
2019
, “
Machine Learning and AI for Long-Term Fault Prognosis in Complex Manufacturing Systems
,”
CIRP Ann.
,
68
(
1
), pp.
459
462
.
21.
Dong
,
Y.
,
Tan
,
R.
,
Zhang
,
P.
,
Peng
,
Q.
, and
Shao
,
P.
,
2021
, “
Product Redesign Using Functional Backtrack With Digital Twin
,”
Adv. Eng. Inform.
,
49
, pp.
101361
101361
.
22.
Shi
,
W.
,
Cao
,
J.
,
Zhang
,
Q.
,
Li
,
Y.
, and
Xu
,
L.
,
2016
, “
Edge Computing: Vision and Challenges
,”
IEEE Internet Things J.
,
3
(
5
), pp.
637
646
.
23.
Satyanarayanan
,
M.
,
2017
, “
The Emergence of Edge Computing
,”
Computer
,
50
(
1
), pp.
30
39
.
24.
Yassein
,
M. B.
,
Shatnawi
,
M. Q.
,
Aljwarneh
,
S.
, and
Al-Hatmi
,
R.
,
2017
, “
Internet of Things: Survey and Open Issues of MQTT Protocol
,”
2017 International Conference on Engineering & MIS (ICEMIS)
,
University of Monastir, Monastir, Tunisia
,
May 8–10
.
25.
Hoppe
,
S.
,
2014
, “
Forerunner to Industry 4.0 and the Internet of Things
,”
Control Eng.
,
61
(
11
), pp.
48
51
.
26.
Hankel
,
M.
, and
Rexroth
,
B.
,
2015
, “
The Reference Architectural Model Industrie 4.0 (RAMI 4.0)
,”
ZVEI
,
2
(
2
), pp.
4
9
. https://www.zvei.org/fileadmin/user_upload/Themen/Industrie_4.0/Das_Referenzarchitekturmodell_RAMI_4.0_und_die_Industrie_4.0-Komponente/pdf/ZVEI-Industrie-40-RAMI-40-English.pdf
27.
Pokharel
,
R.
,
Pandey
,
A.
, and
Scheinker
,
A.
,
2021
, “
Physics-Informed Data-Driven Surrogate Modeling for Full-Field 3D Microstructure and Micromechanical Field Evolution of Polycrystalline Materials
,”
JOM
,
73
(
11
), pp.
3371
3382
.
28.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
29.
Benner
,
P.
,
Ohlberger
,
M.
,
Cohen
,
A.
, and
Willcox
,
K.
,
2017
,
Model Reduction and Approximation: Theory and Algorithms
,
SIAM
,
Philadelphia, PA
.
30.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Paper
, vol.
1
, pp.
1
7
.
31.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.
32.
Shao
,
G.
,
2021
, “
Use Case Scenarios for Digital Twin Implementation Based on ISO 23247
.” Advanced Manufacturing Series (NIST AMS),
National Institute of Standards
.
33.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2015
, “
A Cyber–Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
.
34.
Redelinghuys
,
A. J. H.
,
Basson
,
A. H.
, and
Kruger
,
K.
,
2019
, “
A Six-Layer Architecture for the Digital Twin: A Manufacturing Case Study Implementation
,”
J. Intell. Manuf.
,
31
(
6
), pp.
1383
1402
.
35.
Beitz
,
W.
,
Pahl
,
G.
,
Feldhusen
,
J.
, and
Grote
,
K.
,
2007
,
Engineering Design: A Systematic Approach
, 3rd ed.,
Springer
,
London
, pp.
XXI
617
.
36.
Little
,
A. D.
,
Wood
,
K. L.
, and
McAdams
,
D. A.
,
1997
, “
Functional Analysis: A Fundamental Empirical Study for Reverse Engineering, Benchmarking and Redesign
,”
ASME 1997 Design Engineering Technical Conferences
,
Sacramento, CA
,
Sept. 14–17
.
37.
Stone
,
R. B.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.
38.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Evaluation of the Functional Basis Using an Information Theoretic Approach
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
1
), pp.
87
105
.
39.
Kurfman
,
M. A.
,
Stock
,
M. E.
,
Stone
,
R. B.
,
Rajan
,
J.
, and
Wood
,
K. L.
,
2003
, “
Experimental Studies Assessing the Repeatability of a Functional Modeling Derivation Method
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
682
693
.
40.
Hermann
,
M.
,
Pentek
,
T.
, and
Otto
,
B.
,
2016
, “
Design Principles for Industrie 4.0 Scenarios
,”
2016 49th Hawaii International Conference on System Sciences (HICSS)
,
Koloa, HI
,
Jan. 5–8
.
41.
Margherita
,
E. G.
, and
Braccini
,
A. M.
,
2020
, “
Industry 4.0 Technologies in Flexible Manufacturing for Sustainable Organizational Value: Reflections From a Multiple Case Study of Italian Manufacturers
,”
Inf. Syst. Front.
, pp.
1
22
.
42.
Strandhagen
,
J. W.
,
Alfnes
,
E.
,
Strandhagen
,
J. O.
, and
Vallandingham
,
L. R.
,
2017
, “
The fit of Industry 4.0 Applications in Manufacturing Logistics: A Multiple Case Study
,”
Adv. Manuf.
,
5
(
4
), pp.
344
358
.
43.
D'Emilia
,
G.
,
Gaspari
,
A.
, and
Natale
,
E.
,
2018
, “
Measurements for Smart Manufacturing in an Industry 4.0 Scenario A Case-Study on a Mechatronic System
,”
2018 Workshop on Metrology for Industry 4.0 and IoT
,
Brescia, Italy
,
Apr. 16–18
.
44.
Guerra-Zubiaga
,
D.
,
Kuts
,
V.
,
Mahmood
,
K.
,
Bondar
,
A.
,
Nasajpour-Esfahani
,
N.
, and
Otto
,
T.
,
2021
, “
An Approach to Develop a Digital Twin for Industry 4.0 Systems: Manufacturing Automation Case Studies
,”
Int. J. Comput. Integr. Manuf.
,
34
(
9
), pp.
933
949
.
45.
Roy
,
R. B.
,
Mishra
,
D.
,
Pal
,
S. K.
,
Chakravarty
,
T.
,
Panda
,
S.
,
Girish Chandra
,
M.
,
Pal
,
A.
,
Misra
,
P.
,
Chakravarty
,
D.
, and
Misra
,
S.
,
2020
, “
Digital Twin: Current Scenario and a Case Study on a Manufacturing Process
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
3691
3714
.
46.
Luo
,
W.
,
Hu
,
T.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2018
, “
Digital Twin for CNC Machine Tool: Modeling and Using Strategy
,”
J. Ambient Intell. Humaniz. Comput.
,
10
(
3
), pp.
1129
1140
.
47.
Zheng
,
Y.
,
Yang
,
S.
, and
Cheng
,
H.
,
2018
, “
An Application Framework of Digital Twin and Its Case Study
,”
J. Ambient Intell. Humaniz. Comput.
,
10
(
3
), pp.
1141
1153
.
48.
Schroeder
,
G. N.
,
Steinmetz
,
C.
,
Pereira
,
C. E.
, and
Espindola
,
D. B.
,
2016
, “
Digital Twin Data Modeling With AutomationML and a Communication Methodology for Data Exchange
,”
IFAC-PapersOnLine
,
49
(
30
), pp.
12
17
.
49.
López Seguí
,
F.
,
Navarrete Duran
,
J. M.
,
Tuldrà
,
A.
,
Sarquella
,
M.
,
Revollo
,
B.
,
Llibre
,
J. M.
,
Ara Del Rey
,
J.
, et al
,
2021
, “
Impact of Mass Workplace COVID-19 Rapid Testing on Health and Healthcare Resource Savings
,”
Int. J. Environ. Res. Public Health
,
18
(
13
), p.
7129
.
50.
Peeling
,
R. W.
,
Olliaro
,
P. L.
,
Boeras
,
D. I.
, and
Fongwen
,
N.
,
2021
, “
Scaling Up COVID-19 Rapid Antigen Tests: Promises and Challenges
,”
Lancet Infect. Dis.
,
21
(
9
), pp.
e290
e295
.
51.
Reilly
,
M.
,
2020
, “
Texas A&M System, Worlds Inc. Collaborate on COVID-19 Breathalyzer
,” Texas A&M Today, November 19, 2020, https://today.tamu.edu/2020/11/19/texas-am-system-worlds-inc-collaborate-on-covid-19-breathalyzer/?msclkid=a9487560cfdb11ecb0b259bd8a6f2304
52.
Kermali
,
M.
,
Khalsa
,
R. K.
,
Pillai
,
K.
,
Ismail
,
Z.
, and
Harky
,
A.
,
2020
, “
The Role of Biomarkers in Diagnosis of COVID—A Systematic Review
,”
Life Sci.
,
254
, p.
117788
.
53.
Patel
,
D.
,
Kher
,
V.
,
Desai
,
B.
,
Lei
,
X.
,
Cen
,
S.
,
Nanda
,
N.
,
Gholamrezanezhad
,
A.
,
Duddalwar
,
V.
,
Varghese
,
B.
, and
Oberai
,
A. A.
,
2021
, “
Machine Learning Based Predictors for COVID-19 Disease Severity
,”
Sci. Rep.
,
11
(
1
), p.
4673
.
54.
Bolton
,
A.
,
Butler
,
L.
,
Dabson
,
I.
,
Enzer
,
M.
,
Evans
,
M.
,
Fenemore
,
T.
,
Harradence
,
F.
,
Keaney
,
E.
,
Kemp
,
A.
, and
Luck
,
A.
,
2018
, “Gemini Principles,” https://www.cdbb.cam.ac.uk/system/files/documents/TheGeminiPrinciples.pdf.
55.
Lamb
,
K.
,
2019
, “Principle-Based Digital Twins: A Scoping Review,” https://www.cdbb.cam.ac.uk/news/principle-based-digital-twins-scoping-review.
56.
Pang
,
T. Y.
,
Pelaez Restrepo
,
J. D.
,
Cheng
,
C.-T.
,
Yasin
,
A.
,
Lim
,
H.
, and
Miletic
,
M.
,
2021
, “
Developing a Digital Twin and Digital Thread Framework for an ‘Industry 4.0’ Shipyard
,”
Appl. Sci.
,
11
(
3
),
1097
.
57.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2001
, “
The NIST Chemistry WebBook: A Chemical Data Resource on the Internet
,”
J. Chem. Eng. Data
,
46
(
5
), pp.
1059
1063
.
58.
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Wood
,
K. L.
,
1999
, “
Functional Interdependence and Product Similarity Based on Customer Needs
,”
Res. Eng. Des.
,
11
(
1
), pp.
1
19
.
59.
Zhao
,
G.
, and
Huang
,
J.
,
2018
, “
Deepsim: Deep Learning Code Functional Similarity
,”
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
,
Lake Buena Vista, FL
,
Nov. 4–9
.
60.
Bhasin
,
D.
,
Staack
,
D.
, and
McAdams
,
D. A.
,
2021
, “
Designing Robust Systems Using Bioinspired Product Architecture
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
.
You do not currently have access to this content.