Abstract

This paper presents the design and analysis of a three-fingered deployable metamorphic robotic grasper for manipulating large-scale unknown objects. This grasper is composed of three fingers and a single-mobility umbrella-shaped palmar mechanism. First, the mechanism-design of the grasper is introduced and the metamorphic-motion process is analyzed, followed by the structural optimization, the finger with three modules can be deployed from 111.5 mm to 304 mm, and the good deploy/fold ratio can reach 2.73. This equips the grasper with a compact folded configuration and a large deployed configuration. Second, kinematic models of the deployment motion and grasping motion are independently established, and kinematic analysis is conducted. To further illustrate kinematic performance, kinematic simulation for the grasper is then performed. Third, the condition of the stable grasp is analyzed; trajectory planning of the grasper based on an S-shaped acceleration and deceleration function algorithm is then carried out. Fourth, a control system is designed and a physical prototype is fabricated. Grasping experiments are then conducted to prove the ability of the grasper to grasp objects of various sizes and shapes.

References

1.
Li
,
H. L.
,
Yao
,
J. T.
, and
Liu
,
C. Y.
,
2019
, “
A Bioinspired Soft Swallowing Robot Based on Compliant Guiding Structure
,”
Soft Rob.
,
7
(
4
), pp.
1
9
.
2.
Fu
,
H.
, and
Zhang
,
W. Z.
,
2019
, “
The Development of a Soft Robot Hand With Pin-Array Structure
,”
Appl. Sci. Res.
,
9
(
5
), pp.
1
23
.
3.
Devi
,
M.
,
Udupa
,
G.
, and
Sreedharan
,
P.
,
2018
, “
A Novel Underactuated Multi-Fingered Soft Robotic Hand for Prosthetic Application
,”
Robot. Auton. Syst.
,
100
, pp.
267
277
.
4.
Zhou
,
J. S.
,
Yi
,
J.
, and
Chen
,
X. J.
,
2018
, “
SCL-13: A 13-DOF Soft Robotic Hand for Dexterous Grasping and In-Hand Manipulation
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
3379
3386
.
5.
Li
,
H. L.
,
Yao
,
J. T.
, and
Zhou
,
P.
,
2020
, “
High-Force Soft Pneumatic Actuators Based on Novel Casting Method for Robotic Applications
,”
Sens. Actuators, A
,
306
, p.
111957
.
6.
Mishra
,
A. K.
,
Del Dottore
,
E.
,
Sadeghi
,
A.
,
Mondini
,
A.
, and
Mazzolai
,
B.
,
2017
, “
SIMBA: Tendon-Driven Modular Continuum Arm With Soft Reconfigurable Gripper
,”
Front. Robot. AI.
,
4
, p.
4
.
7.
Batsuren
,
K.
, and
Yun
,
D.
,
2019
, “
Soft Robotic Gripper With Chambered Fingers for Performing In-Hand Manipulation
,”
Appl. Sci. Res.
,
9
(
15
), pp.
1
16
.
8.
Crooks
,
W.
,
Vukasin
,
G.
, and
O’Sullivan
,
M.
,
2016
, “
Fin Ray Effect Inspired Soft Robotic Gripper: From the RoboSoft Grand Challenge Toward Optimization
,”
Front. Robot. AI.
,
4
, p.
70
.
9.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2011
, “
On Dexterity and Dexterous Manipulation
,”
Proceedings of the 15th International Conference on Advanced Robotics
,
Tallinn, Estonia
,
June 22–23
, pp.
1
7
.
10.
Rojas
,
N.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2016
, “
The GR2 Gripper: An Under-actuated Hand for Open-Loop In-Hand Planar Manipulation
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
763
770
.
11.
Bircher
,
W. G.
,
Dollar
,
A. M.
, and
Rojas
,
N.
,
2017
, “
A Two-Fingered Robot Gripper With a Large Object Reorientation Range
,”
Proceedings of the 2017 IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
3453
3460
.
12.
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2014
, “
An Underactuated Hand for Efficient Finger-Gaiting-Based Dexterous Manipulation
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics
,
Bali, Indonesia
,
Dec. 5–10
, pp.
2214
2219
.
13.
Backus
,
S. B.
, and
Dollar
,
A. M.
,
2016
, “
An Adaptive Three-Fingered Prismatic Gripper With Passive Rotational Joints
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
668
675
.
14.
Jia
,
G. L.
,
Huang
,
H. L.
, and
Li
,
B.
,
2018
, “
Synthesis of a Novel Type of Metamorphic Mechanism Module for Large Scale Deployable Grasping Mechanisms
,”
Mech. Mach. Theory.
,
128
, pp.
544
559
.
15.
Jia
,
G. L.
,
Huang
,
H. L.
,
Guo
,
H. W.
,
Li
,
B.
, and
Dai
,
J. S.
,
2021
, “
Design of Transformable Hinged Ori-Block Dissected From Cylinders and Cones
,”
ASME J. Mech. Des.
,
143
(
9
), p.
094501
.
16.
Li
,
G. T.
,
Huang
,
H. L.
, and
Guo
,
H. W.
,
2019
, “
Design, Analysis and Control of a Novel Deployable Grasping Manipulator
,”
Mech. Mach. Theory
,
138
, pp.
182
204
.
17.
Gao
,
C. Q.
,
Huang
,
H. L.
,
Li
,
B.
, and
Yang
,
X. J.
,
2019
, “
Design of the Truss-Shaped Deployable Grasping Mechanism Using Mobility Bifurcation
,”
Mech. Mach. Theory
,
139
, pp.
346
358
.
18.
Qiao
,
S. L.
,
Guo
,
H. W.
, and
Liu
,
R. Q.
,
2019
, “
Self-adaptive Grasp Process and Equilibrium Configuration Analysis of a 3-DOF UACT Robotic Finger
,”
Mech. Mach. Theory.
,
133
, pp.
250
266
.
19.
Qiao
,
S. L.
,
Guo
,
H. W.
, and
Liu
,
R. Q.
,
2019
, “
Self-Adaptive Grasp Analysis of a Novel Under-Actuated Cable-Truss Robotic Finger
,”
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
,
233
(
6
), pp.
2121
2134
.
20.
Qiao
,
S. L.
,
Liu
,
R. Q.
, and
Guo
,
H. W.
,
2018
, “
Configuration Design of an Under-Actuated Robotic Hand Based on Maximum Grasping Space
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
9
.
21.
Hu
,
B.
, and
Yu
,
J. J.
,
2015
, “
Unified Solving Inverse Dynamics of 6-DOF Serial-Parallel Manipulators
,”
Appl. Math. Model.
,
39
(
16
), pp.
4715
4732
.
22.
Liu
,
Y. L.
,
Zhang
,
Y. L.
, and
Xu
,
Q. S.
,
2017
, “
Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams
,”
IEEE ASME Trans. Mechatron.
,
22
(
1
), pp.
476
486
.
23.
Emmanouil
,
E.
,
Wei
,
G.
, and
Dai
,
J. S.
,
2016
, “
Spherical Trigonometry Constrained Kinematics for a Dexterous Robotic Hand With an Articulated Palm
,”
Robotica.
,
34
(
12
), pp.
2788
2805
.
24.
Dai
,
J. S.
,
Wang
,
D. L.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multi-Fingered Metamorphic Hand—Metahand
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
942
947
.
25.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
.
26.
Wei
,
G.
,
Dai
,
J. S.
,
Wang
,
S.
, and
Luo
,
H.
,
2011
, “
Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand With a Reconfigurable Palm
,”
Int. J. Humanoid. Robot.
,
8
(
3
), pp.
459
479
.
27.
Gao
,
Z.
,
Wei
,
G.
, and
Dai
,
J. S.
,
2015
, “
Inverse Kinematics and Workspace Analysis of the Metamorphic Hand
,”
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
,
229
(
5
), pp.
965
975
.
28.
Ziesmer
,
J. A.
, and
Voglewede
,
P. A.
,
2009
, “
Design, Analysis, and Testing of a Metamorphic Gripper
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
775
780
.
29.
Gao
,
C. Q.
,
Huang
,
H. L.
,
Yang
,
G.
, and
Li
,
B.
,
2020
, “
Design and Analysis of a Novel 3-DOF Deployable Grasping Mechanism
,”
Proceedings of the IEEE International Conference on Real-Time Computing and Robotics
,
Asahikawa, Hokkaido, Japan
,
Sept. 28–29
, pp: 199–203.
30.
Gao
,
C. Q.
,
Huang
,
H. L.
, and
Li
,
B.
,
2019
, “
Design and Analysis of a Novel Deployable Robotic Grasper
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics
,
Dali, Yunnan, China
,
Dec. 6–8
.
31.
Yahya
,
S.
,
Moghavvemi
,
M.
, and
Mohamed
,
H. A. F.
,
2011
, “
Geometrical Approach of Planar Hyper-Redundant Manipulators: Inverse Kinematics, Path Planning and Workspace
,”
Simul. Model. Pract. Theroy
,
19
(
1
), pp.
406
422
.
You do not currently have access to this content.