Abstract

The use of glass elements in civil engineering is spreading in the last years beyond merely esthetic functions for their ease of installation and production. Nonetheless, the structural performance of such materials in any condition of use is the object of investigation. In this scenario, the paper analyses the performance of an innovative concept of tensegrity floor (patent no. 0001426973) characterized by a particular steel–glass adhesive junction that permits a profitable structural cooperation between such basically different materials. As known, at the base of the effectiveness of tensegrity structures lies the correct tensioning of metal strands which are devoted at keeping the rigid elements compressed. The tensioning level is then responsible of the actual deformation of the structure, which is of course of uttermost importance while speaking of civil applications. To address this issue with the adequate level of confidence required by construction practice, a mechatronic servo-system is proposed, aimed at maintaining, and modifying when needed, the stress state of the metal cables to adjust the deformation of the upper plane in response to varying loads. Three different actuation schemes, with different levels of realization complexity, are analyzed and compared in simulated environment by means of a hybrid multibody-finite elements model.

References

1.
Van De Wijdeven
,
J.
, and
De Jager
,
B.
,
2005
, “
Shape Change of Tensegrity Structures: Design and Control
,”
Proceedings of the 2005 American Control Conference
,
Portland, OR
,
June 8–10
,
IEEE
, pp.
2522
2527
.
2.
Kim
,
T.-H.
,
Suh
,
J.-E.
, and
Han
,
J.-H.
,
2021
, “
Deployable Truss Structure With Flat-Form Storability Using Scissor-Like Elements
,”
Mech. Mach. Theory
,
159
, p.
104252
.
3.
Karnan
,
H.
,
Goyal
,
R.
,
Majji
,
M.
,
Skelton
,
R. E.
, and
Singla
,
P.
,
2017
, “
Visual Feedback Control of Tensegrity Robotic Systems
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
,
IEEE
, pp.
2048
2053
.
4.
Vespignani
,
M.
,
Friesen
,
J. M.
,
SunSpiral
,
V.
, and
Bruce
,
J.
,
2018
, “
Design of Superball V2, a Compliant Tensegrity Robot for Absorbing Large Impacts
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
2865
2871
.
5.
Vespignani
,
M.
,
Ercolani
,
C.
,
Friesen
,
J. M.
, and
Bruce
,
J.
,
2018
, “
Steerable Locomotion Controller for Six-Strut Icosahedral Tensegrity Robots
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
2886
2892
.
6.
Crane III
,
C. D.
,
Duffy
,
J.
, and
Correa
,
J. C.
,
2005
, “
Static Analysis of Tensegrity Structures
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
257
268
.
7.
Schmalz
,
A. P.
, and
Agrawal
,
S. K.
,
2008
, “
Dynamic Workspace and Control of Planar Active Tensegritylike Structures
,”
ASME J. Mech. Des.
,
130
(
12
), p. 122301.
8.
Wu
,
L.
, and
Dai
,
J. S.
,
2021
, “
A Novel Ortho-Triplex Tensegrity Derived by the Linkage-Truss Transformation With Prestress-Stability Analysis Using Screw Theory
,”
ASME J. Mech. Des.
,
143
(
1
), p. 013302.
9.
Veuve
,
N.
,
Sychterz
,
A. C.
, and
Smith
,
I. F.
,
2017
, “
Adaptive Control of a Deployable Tensegrity Structure
,”
Eng. Struct.
,
152
, pp.
14
23
.
10.
Zhang
,
M.
,
Geng
,
X.
,
Bruce
,
J.
,
Caluwaerts
,
K.
,
Vespignani
,
M.
,
SunSpiral
,
V.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2017
, “
Deep Reinforcement Learning for Tensegrity Robot Locomotion
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
634
641
.
11.
Wang
,
R.
,
Goyal
,
R.
,
Chakravorty
,
S.
, and
Skelton
,
R. E.
,
2020
, “
Model and Data Based Approaches to the Control of Tensegrity Robots
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
3846
3853
.
12.
Liu
,
S.
,
Li
,
Q.
,
Wang
,
P.
, and
Guo
,
F.
,
2020
, “
Kinematic and Static Analysis of a Novel Tensegrity Robot
,”
Mech. Mach. Theory
,
149
, p.
103788
.
13.
Shintake
,
J.
,
Zappetti
,
D.
,
Peter
,
T.
,
Ikemoto
,
Y.
, and
Floreano
,
D.
,
2020
, “
Bio-inspired Tensegrity Fish Robot
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
2887
2892
.
14.
Ramadoss
,
V.
,
Sagar
,
K.
,
Ikbal
,
M. S.
,
Calles
,
J. H. L.
, and
Zoppi
,
M.
,
2020
, “
Hedra: A Bio-Inspired Modular Tensegrity Soft Robot With Polyhedral Parallel Modules
,” preprint arXiv:2011.14240.
15.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory
,
159
, p.
104249
.
16.
Hong Park
,
J.
,
2021
, “
Design and Simulation of a Large-Scale 3d Printing System Using Truncated Tetrahedral Tensegrity Robot
,”
Earth and Space 2021
, Virtual Conference,
Apr. 19–23
, pp.
970
977
.
17.
Chan
,
W. L.
,
Arbelaez
,
D.
,
Bossens
,
F.
, and
Skelton
,
R. E.
,
2004
, “
Active Vibration Control of a Three-Stage Tensegrity Structure
,”
Smart Structures and Materials 2004: Damping and Isolation
, Vol.
5386
,
San Diego, CA
,
Mar. 14–18
,
International Society for Optics and Photonics
, pp.
340
346
.
18.
Ali
,
N. B. H.
, and
Smith
,
I.
,
2010
, “
Dynamic Behavior and Vibration Control of a Tensegrity Structure
,”
Int. J. Solids Struct.
,
47
(
9
), pp.
1285
1296
.
19.
Adam
,
B.
, and
Smith
,
I. F.
,
2008
, “
Active Tensegrity: A Control Framework for an Adaptive Civil-Engineering Structure
,”
Comput. Struct.
,
86
(
23–24
), pp.
2215
2223
.
20.
Korkmaz
,
S.
,
2011
, “
A Review of Active Structural Control: Challenges for Engineering Informatics
,”
Comput. Struct.
,
89
(
23–24
), pp.
2113
2132
.
21.
Munafó
,
P.
,
2017
, “
Tensegrity Floor
,” May 3, Patent No. 0001426973.
22.
Alderucci
,
T.
,
Terlizzi
,
V.
,
Urso
,
S.
,
Borsellino
,
C.
, and
Munafò
,
P.
,
2018
, “
Experimental Study of the Adhesive Glass-Steel Joint Behavior in a Tensegrity Floor
,”
Int. J. Adhes. Adhes.
,
85
, pp.
293
302
.
23.
Quirant
,
J.
,
Kazi-Aoual
,
M.
, and
Motro
,
R.
,
2003
, “
Designing Tensegrity Systems: The Case of a Double Layer Grid
,”
Eng. Struct.
,
25
(
9
), pp.
1121
1130
.
24.
Cimmino
,
M.
,
Miranda
,
R.
,
Sicignano
,
E.
,
Ferreira
,
A.
,
Skelton
,
R.
, and
Fraternali
,
F.
,
2017
, “
Composite Solar Façades and Wind Generators With Tensegrity Architecture
,”
Compos. Part B: Eng.
,
115
, pp.
275
281
.
25.
Motro
,
R.
,
2003
,
Tensegrity: Structural Systems for the Future
,
Elsevier
.
26.
Fest
,
E.
,
Shea
,
K.
, and
Smith
,
I. F.
,
2004
, “
Active Tensegrity Structure
,”
J. Struct. Eng.
,
130
(
10
), pp.
1454
1465
.
27.
Shibata
,
M.
,
Saijyo
,
F.
, and
Hirai
,
S.
,
2009
, “
Crawling by Body Deformation of Tensegrity Structure Robots
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
,
IEEE
, pp.
4375
4380
.
You do not currently have access to this content.