Abstract

Phononic bandgap metamaterials, which consist of periodic cellular structures, are capable of absorbing energy within a certain frequency range. Designing metamaterials that trap waves across a wide wave frequency range is still a challenging task. In this paper, we present a deep feature learning-based design framework for both unsupervised generative design and supervised learning-based exploitative optimization. The Gaussian mixture beta variational autoencoder (GM-βVAE) is used to extract latent features as design variables. Gaussian process (GP) regression models are trained to predict the relationship between latent features and properties for property-driven optimization. The optimal structural designs are reconstructed by mapping the optimized latent feature values to the original image space. Compared with the regular variational autoencoder (VAE), we demonstrate that GM-βVAE has a better learning capability and is able to generate a more diversified design set in unsupervised generative design. Furthermore, we propose an iterative GM-βVAE model updating-based design framework. In each iteration, the optimal designs found property-driven optimization is used to update the training dataset. The GM-βVAE model is re-trained with the updated dataset for the optimization search in the next iteration. The effectiveness of the iterative design framework is demonstrated by comparing the proposed designs with the designs found by the traditional single-loop design method and the topologically optimized designs reported in literatures. The caveats to designing phonic bandgap metamaterials are summarized.

References

1.
Frenzel
,
T.
,
Köpfler
,
J.
,
Jung
,
E.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2019
, “
Ultrasound Experiments on Acoustical Activity in Chiral Mechanical Metamaterials
,”
Nat. Commun.
,
10
(
1
), pp.
1
6
.
2.
Yu
,
X.
,
Zhou
,
J.
,
Liang
,
H.
,
Jiang
,
Z.
, and
Wu
,
L.
,
2018
, “
Mechanical Metamaterials Associated With Stiffness, Rigidity and Compressibility: A Brief Review
,”
Prog. Mater. Sci.
,
94
, pp.
114
173
.
3.
Wu
,
L.
,
Wang
,
Y.
,
Zhai
,
Z.
,
Yang
,
Y.
,
Krishnaraju
,
D.
,
Lu
,
J.
,
Wu
,
F.
,
Wang
,
Q.
, and
Jiang
,
H.
,
2020
, “
Mechanical Metamaterials for Full-Band Mechanical Wave Shielding
,”
Appl. Mater. Today
,
20
, p.
100671
.
4.
Joannopoulos
,
J. D.
,
Johnson
,
S. G.
,
Winn
,
J. N.
, and
Meade
,
R. D.
,
2011
,
Photonic Crystals
,
Princeton University Press
,
Princeton, NJ
.
5.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
, Vol.
173
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
6.
Cervera
,
F.
,
Sanchis
,
L.
,
Sánchez-Pérez
,
J. V.
,
Martínez-Sala
,
R.
,
Rubio
,
C.
,
Meseguer
,
F.
,
López
,
C.
,
Caballero
,
D.
, and
Sánchez-Dehesa
,
J.
,
2001
, “
Refractive Acoustic Devices for Airborne Sound
,”
Phys. Rev. Lett.
,
88
(
2
), p.
023902
.
7.
Munday
,
J.
,
Bennett
,
C. B.
, and
Robertson
,
W.
,
2002
, “
Band Gaps and Defect Modes in Periodically Structured Waveguides
,”
J. Acoust. Soc. Am.
,
112
(
4
), pp.
1353
1358
.
8.
Benchabane
,
S.
,
Khelif
,
A.
,
Rauch
,
J.-Y.
,
Robert
,
L.
, and
Laude
,
V.
,
2006
, “
Evidence for Complete Surface Wave Band Gap in a Piezoelectric Phononic Crystal
,”
Phys. Rev. E
,
73
(
6
), p.
065601
.
9.
Nemat-Nasser
,
S.
,
2015
, “
Refraction Characteristics of Phononic Crystals
,”
Acta Mech. Sin.
,
31
(
4
), pp.
481
493
.
10.
Mitchell
,
S. J.
,
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2014
, “
Metaconcrete: Designed Aggregates to Enhance Dynamic Performance
,”
J. Mech. Phys. Solids
,
65
, pp.
69
81
.
11.
Wang
,
Y.-F.
,
Wang
,
Y.-S.
, and
Wang
,
L.
,
2013
, “
Two-Dimensional Ternary Locally Resonant Phononic Crystals With a Comblike Coating
,”
J. Phys. D: Appl. Phys.
,
47
(
1
), p.
015502
.
12.
Wang
,
Y.-F.
,
Wang
,
Y.-S.
, and
Su
,
X.-X.
,
2011
, “
Large Bandgaps of Two-Dimensional Phononic Crystals With Cross-Like Holes
,”
J. Appl. Phys.
,
110
(
11
), p.
113520
.
13.
Chen
,
Q.
, and
Elbanna
,
A.
,
2016
, “
Modulating Elastic Band Gap Structure in Layered Soft Composites Using Sacrificial Interfaces
,”
ASME J. Appl. Mech.
,
83
(
11
), p. 111009.
14.
Nemat-Nasser
,
S.
,
Sadeghi
,
H.
,
Amirkhizi
,
A.
, and
Srivastava
,
A.
,
2015
, “
Phononic Layered Composites for Stress-Wave Attenuation
,”
Mech. Res. Commun.
,
68
, pp.
65
69
.
15.
Huang
,
Y.
,
Li
,
J.
,
Chen
,
W.
, and
Bao
,
R.
,
2019
, “
Tunable Bandgaps in Soft Phononic Plates With Spring-Mass-Like Resonators
,”
Int. J. Mech. Sci.
,
151
, pp.
300
313
.
16.
Wang
,
P.
,
Shim
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Effects of Geometric and Material Nonlinearities on Tunable Band Gaps and Low-Frequency Directionality of Phononic Crystals
,”
Phys. Rev. B
,
88
(
1
), p.
014304
.
17.
Dong
,
H.-W.
,
Su
,
X.-X.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2014
, “
Topological Optimization of Two-Dimensional Phononic Crystals Based on the Finite Element Method and Genetic Algorithm
,”
Struct. Multidiscipl. Optim.
,
50
(
4
), pp.
593
604
.
18.
Sigmund
,
O.
, and
Søndergaard Jensen
,
J.
,
2003
, “
Systematic Design of Phononic Band–Gap Materials and Structures by Topology Optimization
,”
Philos. Trans. R. Soc. London, Ser. A
,
361
(
1806
), pp.
1001
1019
.
19.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
.
20.
Hussein
,
M. I.
,
Hamza
,
K.
,
Hulbert
,
G. M.
,
Scott
,
R. A.
, and
Saitou
,
K.
,
2006
, “
Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics
,”
Struct. Multidiscipl. Optim.
,
31
(
1
), pp.
60
75
.
21.
Liu
,
Z.-F.
,
Wu
,
B.
, and
He
,
C.-F.
,
2014
, “
Band-Gap Optimization of Two-Dimensional Phononic Crystals Based on Genetic Algorithm and FPWE
,”
Waves Random Complex Medium
,
24
(
3
), pp.
286
305
.
22.
Han
,
X.
, and
Zhang
,
Z.
,
2019
, “
Topological Optimization of Phononic Crystal Thin Plate by a Genetic Algorithm
,”
Sci. Rep.
,
9
(
1
), pp.
1
13
.
23.
Faust
,
O.
,
Hagiwara
,
Y.
,
Hong
,
T. J.
,
Lih
,
O. S.
, and
Acharya
,
U. R.
,
2018
, “
Deep Learning for Healthcare Applications Based on Physiological Signals: A Review
,”
Comput. Methods Programs Biomed.
,
161
, pp.
1
13
.
24.
Guo
,
Y.
,
Liu
,
Y.
,
Oerlemans
,
A.
,
Lao
,
S.
,
Wu
,
S.
, and
Lew
,
M. S.
,
2016
, “
Deep Learning for Visual Understanding: A Review
,”
Neurocomputing
,
187
, pp.
27
48
.
25.
Vargas
,
R.
,
Mosavi
,
A.
, and
Ruiz
,
R.
,
2017
, “
Deep Learning: A Review
,”
Adv. Intell. Syst. Comput.
[Working Paper].
26.
Zinn
,
J.
,
Vogel-Heuser
,
B.
, and
Gruber
,
M.
,
2021
, “
Fault-Tolerant Control of Programmable Logic Controller-Based Production Systems With Deep Reinforcement Learning
,”
ASME J. Mech. Des.
,
143
(
7
), p.
072004
.
27.
Lee
,
X. Y.
,
Balu
,
A.
,
Stoecklein
,
D.
,
Ganapathysubramanian
,
B.
, and
Sarkar
,
S.
,
2019
, “
A Case Study of Deep Reinforcement Learning for Engineering Design: Application to Microfluidic Devices for Flow Sculpting
,”
ASME J. Mech. Des.
,
141
(
11
), p. 111401.
28.
Oh
,
S.
,
Jung
,
Y.
,
Kim
,
S.
,
Lee
,
I.
, and
Kang
,
N.
,
2019
, “
Deep Generative Design: Integration of Topology Optimization and Generative Models
,”
ASME J. Mech. Des.
,
141
(
11
), p. 111405.
29.
Agrawal
,
A.
, and
Choudhary
,
A.
,
2019
, “
Deep Materials Informatics: Applications of Deep Learning in Materials Science
,”
MRS Commun.
,
9
(
3
), pp.
779
792
.
30.
Ryan
,
K.
,
Lengyel
,
J.
, and
Shatruk
,
M.
,
2018
, “
Crystal Structure Prediction via Deep Learning
,”
J. Am. Chem. Soc.
,
140
(
32
), pp.
10158
10168
.
31.
Yang
,
K. V.
,
Rometsch
,
P.
,
Jarvis
,
T.
,
Rao
,
J.
,
Cao
,
S.
,
Davies
,
C.
, and
Wu
,
X.
,
2018
, “
Porosity Formation Mechanisms and Fatigue Response in Al-Si-Mg Alloys Made by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
712
, pp.
166
174
.
32.
Cecen
,
A.
,
Dai
,
H.
,
Yabansu
,
Y. C.
,
Kalidindi
,
S. R.
, and
Song
,
L.
,
2018
, “
Material Structure-Property Linkages Using Three-Dimensional Convolutional Neural Networks
,”
Acta Mater.
,
146
, pp.
76
84
.
33.
Liu
,
R.
,
Agrawal
,
A.
,
Liao
,
W.-K.
,
Choudhary
,
A.
, and
De Graef
,
M.
,
2016
, “
Materials Discovery: Understanding Polycrystals From Large-Scale Electron Patterns
,”
2016 IEEE International Conference on Big Data (Big Data)
,
Washington, DC
,
Dec. 5–8
,
IEEE
, pp.
2261
2269
.
34.
Jha
,
D.
,
Singh
,
S.
,
Al-Bahrani
,
R.
,
Liao
,
W.-K.
,
Choudhary
,
A.
,
De Graef
,
M.
, and
Agrawal
,
A.
,
2018
, “
Extracting Grain Orientations From Ebsd Patterns of Polycrystalline Materials Using Convolutional Neural Networks
,”
Microsc. Microanal.
,
24
(
5
), pp.
497
502
.
35.
DeCost
,
B. L.
,
Lei
,
B.
,
Francis
,
T.
, and
Holm
,
E. A.
,
2019
, “
High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel
,”
Microsc. Microanal.
,
25
(
1
), pp.
21
29
.
36.
Yang
,
Z.
,
Li
,
X.
,
Catherine Brinson
,
L.
,
Choudhary
,
A. N.
,
Chen
,
W.
, and
Agrawal
,
A.
,
2018
, “
Microstructural Materials Design via Deep Adversarial Learning Methodology
,”
ASME J. Mech. Des.
,
140
(
11
), p. 111416.
37.
Cang
,
R.
,
Xu
,
Y.
,
Chen
,
S.
,
Liu
,
Y.
,
Jiao
,
Y.
, and
Yi Ren
,
M.
,
2017
, “
Microstructure Representation and Reconstruction of Heterogeneous Materials via Deep Belief Network for Computational Material Design
,”
ASME J. Mech. Des.
,
139
(
7
), p. 071404.
38.
Goodfellow
,
I.
,
2016
, “
Nips 2016 Tutorial: Generative Adversarial Networks
,” arXiv preprint arXiv:1701.00160.
39.
Nie
,
W.
, and
Patel
,
A. B.
,
2020
, “
Towards a Better Understanding and Regularization of GAN Training Dynamics
,”
Uncertainty in Artificial Intelligence
,
Tel Aviv, Israel
,
July 22–25, 2019
,
PMLR
, pp.
281
291
.
40.
Wang
,
L.
,
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2020
, “
Deep Generative Modeling for Mechanistic-Based Learning and Design of Metamaterial Systems
,”
Comput. Methods Appl. Mech. Eng.
,
372
, p.
113377
.
41.
Tan
,
R. K.
,
Zhang
,
N. L.
, and
Ye
,
W.
,
2019
, “
A Deep Learning-Based Method for the Design of Microstructural Materials
,”
Struct. Multidiscipl. Optim.
,
61
(
4
), pp.
1
22
.
42.
Mao
,
Y.
,
He
,
Q.
, and
Zhao
,
X.
,
2020
, “
Designing Complex Architectured Materials With Generative Adversarial Networks
,”
Sci. Adv.
,
6
(
17
), p.
eaaz4169
.
43.
Li
,
X.
,
Ning
,
S.
,
Liu
,
Z.
,
Yan
,
Z.
,
Luo
,
C.
, and
Zhuang
,
Z.
,
2020
, “
Designing Phononic Crystal With Anticipated Band Gap Through a Deep Learning Based Data-Driven Method
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112737
.
44.
Ma
,
W.
,
Cheng
,
F.
,
Xu
,
Y.
,
Wen
,
Q.
, and
Liu
,
Y.
,
2019
, “
Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model With Semi-Supervised Learning Strategy
,”
Adv. Mater.
,
31
(
35
), p.
1901111
.
45.
Liu
,
Z.
,
Raju
,
L.
,
Zhu
,
D.
, and
Cai
,
W.
,
2020
, “
A Hybrid Strategy for the Discovery and Design of Photonic Structures
,”
IEEE J. Emerg. Sel. Top. Circuits Syst.
,
10
(
1
), pp.
126
135
.
46.
Gurbuz
,
C.
,
Kronowetter
,
F.
,
Dietz
,
C.
,
Eser
,
M.
,
Schmid
,
J.
, and
Marburg
,
S.
,
2021
, “
Generative Adversarial Networks for the Design of Acoustic Metamaterials
,”
J. Acoust. Soc. Am.
,
149
(
2
), pp.
1162
1174
.
47.
So
,
S.
, and
Rho
,
J.
,
2019
, “
Designing Nanophotonic Structures Using Conditional Deep Convolutional Generative Adversarial Networks
,”
Nanophotonics
,
8
(
7
), pp.
1255
1261
.
48.
Yeung
,
C.
,
Tsai
,
R.
,
Pham
,
B.
,
King
,
B.
,
Kawagoe
,
Y.
,
Ho
,
D.
,
Liang
,
J.
,
Knight
,
M. W.
, and
Raman
,
A. P.
,
2020
, “
Global Inverse Design Across Multiple Photonic Structure Classes Using Generative Deep Learning
,” arXiv preprint arXiv:2012.15790.
49.
Kim
,
Y.
,
Park
,
H. K.
,
Jung
,
J.
,
Asghari-Rad
,
P.
,
Lee
,
S.
,
Kim
,
J. Y.
,
Jung
,
H. G.
, and
Kim
,
H. S.
,
2021
, “
Exploration of Optimal Microstructure and Mechanical Properties in Continuous Microstructure Space Using a Variational Autoencoder
,”
Mater. Des.
,
202
, p. 109544.
50.
Jung
,
J.
,
Yoon
,
J. I.
,
Park
,
H. K.
,
Jo
,
H.
, and
Kim
,
H. S.
,
2020
, “
Microstructure Design Using Machine Learning Generated Low Dimensional and Continuous Design Space
,”
Materialia
,
11
, p.
100690
.
51.
Dilokthanakul
,
N.
,
Mediano
,
P. A.
,
Garnelo
,
M.
,
Lee
,
M. C.
,
Salimbeni
,
H.
,
Arulkumaran
,
K.
, and
Shanahan
,
M.
,
2016
, “
Deep Unsupervised Clustering With Gaussian Mixture Variational Autoencoders
,” arXiv preprint arXiv:1611.02648.
52.
Rasmussen
,
C. E.
,
2003
, “
Gaussian Processes in Machine Learning
,”
Summer School on Machine Learning
,
Springer
,
Berlin/Heidelberg, Germany
.
53.
Baum
,
E. B.
, and
Wilczek
,
F.
,
1988
, “
Supervised Learning of Probability Distributions by Neural Networks
,”
Neural Information Processing Systems
,
New York, NY
.
54.
Born
,
M.
, and
Wolf
,
E.
,
2013
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
,
Elsevier
,
New York
.
55.
Foehr
,
A.
,
Bilal
,
O. R.
,
Huber
,
S. D.
, and
Daraio
,
C.
,
2018
, “
Spiral-Based Phononic Plates: From Wave Beaming to Topological Insulators
,”
Phys. Rev. Lett.
,
120
(
20
), p.
205501
.
56.
Elford
,
D. P.
,
Chalmers
,
L.
,
Kusmartsev
,
F. V.
, and
Swallowe
,
G. M.
,
2011
, “
Matryoshka Locally Resonant Sonic Crystal
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
2746
2755
.
57.
Li
,
Y.
,
Baker
,
E.
,
Reissman
,
T.
,
Sun
,
C.
, and
Liu
,
W. K.
,
2017
, “
Design of Mechanical Metamaterials for Simultaneous Vibration Isolation and Energy Harvesting
,”
Appl. Phys. Lett.
,
111
(
25
), p.
251903
.
58.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B
,
78
(
18
), p.
184107
.
59.
Xia
,
Z.
,
Zhang
,
Y.
, and
Ellyin
,
F.
,
2003
, “
A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications
,”
Int. J. Solids Struct.
,
40
(
8
), pp.
1907
1921
.
60.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
61.
Lookman
,
T.
,
Balachandran
,
P. V.
,
Xue
,
D.
, and
Yuan
,
R.
,
2019
, “
Active Learning in Materials Science With Emphasis on Adaptive Sampling Using Uncertainties for Targeted Design
,”
npj Comput. Mater.
,
5
(
1
), pp.
1
17
.
62.
Kim
,
C.
,
Chandrasekaran
,
A.
,
Jha
,
A.
, and
Ramprasad
,
R.
,
2019
, “
Active-Learning and Materials Design: The Example of High Glass Transition Temperature Polymers
,”
MRS Commun.
,
9
(
3
), pp.
860
866
.
63.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
,” arXiv preprint arXiv:1312.6114.
64.
Higgins
,
I.
,
Matthey
,
L.
,
Pal
,
A.
,
Burgess
,
C.
,
Glorot
,
X.
,
Botvinick
,
M.
,
Mohamed
,
S.
, and
Lerchner
,
A.
,
2017
, “
Beta-Vae: Learning Basic Visual Concepts With a Constrained Variational Framework
,”
International Conference on Learning Representations (ICLR)
,
Toulon, France
,
Apr. 24–26
, Vol. 2, No. 5, p.
6
.
65.
De Maesschalck
,
R.
,
Jouan-Rimbaud
,
D.
, and
Massart
,
D. L.
,
2000
, “
The Mahalanobis Distance
,”
Chemom. Intell. Lab. Syst.
,
50
(
1
), pp.
1
18
.
66.
Vogiatzis
,
P.
,
Chen
,
S.
,
Wang
,
X.
,
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Topology Optimization of Multi-Material Negative Poisson’s Ratio Metamaterials Using a Reconciled Level Set Method
,”
Comput.-Aided Des.
,
83
, pp.
15
32
.
67.
Chan
,
Y.-C.
,
Ahmed
,
F.
,
Wang
,
L.
, and
Chen
,
W.
,
2021
, “
METASET: Exploring Shape and Property Spaces for Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031707
.
68.
Vogiatzis
,
P.
,
Chen
,
S.
,
Gu
,
X. D.
,
Chuang
,
C.-H.
,
Xu
,
H.
, and
Lei
,
N.
,
2018
, “
Multi-Material Topology Optimization of Structures Infilled With Conformal Metamaterials
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, Vol. 51760, p. V02BT03A009.
69.
Goodfellow
,
I.
,
Bengio
,
Y.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2016
,
Deep Learning
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
70.
Park
,
J.
, and
Choi
,
S.
,
2019
, “
Multi-Response Gaussian Process for Multidisciplinary Design Optimization
,”
AIAA Aviation 2019 Forum
,
Dallas, TX
,
June 17–21
, p.
2888
.
71.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
72.
Diaz
,
A.
, and
Sigmund
,
O.
,
1995
, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
,
10
(
1
), pp.
40
45
.
73.
Jog
,
C. S.
, and
Haber
,
R. B.
,
1996
, “
Stability of Finite Element Models for Distributed-Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
,
130
(
3–4
), pp.
203
226
.
74.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
.
75.
Kulesza
,
A.
, and
Taskar
,
B.
,
2012
, “
Determinantal Point Processes for Machine Learning
,” arXiv preprint arXiv:1207.6083.
76.
Lee
,
C.-G.
,
Cho
,
D.-H.
, and
Jung
,
H.-K.
,
1999
, “
Niching Genetic Algorithm With Restricted Competition Selection for Multimodal Function Optimization
,”
IEEE Trans. Magn.
,
35
(
3
), pp.
1722
1725
.
You do not currently have access to this content.