Abstract

Flexure oscillators are promising time bases, thanks to their high quality factor and monolithic design compatible with microfabrication. In mechanical watchmaking, they could advantageously replace the traditional balance and hairspring oscillator, leading to improvements in timekeeping accuracy, autonomy, and assembly. As MEMS oscillators, their performance can rival that of the well-established quartz oscillator. However, their inherent nonlinear elastic behavior can introduce a variation of their frequency with amplitude called isochronism defect, a major obstacle to accurate timekeeping in mechanical watches. Previous research has focused on addressing this issue by controlling the elastic properties of flexure oscillators. Yet, these oscillators exhibit other amplitude-related frequency variations caused by changes of inertia with amplitude. In this article, we not only improve existing models by taking into account inertia effects but also present a new way of using them to adjust the isochronism defect. This results in a better understanding of flexure oscillators and an alternative way of tuning isochronism by acting on inertia instead of stiffness. This also opens the door to promising architectures such as the new rotation–dilation coupled oscillator (RDCO) whose symmetry has the advantage of minimizing the influence of linear accelerations on its frequency (the other major limitation of flexure oscillators). We derive analytical models for the isochronism of this oscillator, show a dimensioning with compensating inertia and stiffness variations, and present a practical method for post-fabrication isochronism tuning by displacing masses. The models are validated by finite element method (FEM) and mockups serve as preliminary proof-of-concept.

References

1.
Federation of the Swiss Watch Industry
,
2020
, “
Exports of Swiss Watches Electronic and Mechanical
,” www.fhs.swiss/eng/statistics.html
2.
Matthys
,
R. J.
,
2004
,
Accurate Clock Pendulums
,
Oxford University Press
,
Oxford
.
3.
Bateman
,
D. A.
,
1977
, “
Vibration Theory and Clocks
,”
Horolog. J.
,
1977–1978
(
7 parts
).
4.
Vardi
,
I.
,
2014
, “
Le facteur de qualité en horlogerie mécanique
,”
Bull. Soc. Suisse Chronométrie
,
75
, pp.
57
65
.
5.
Privat-Deschanel
,
P.
, and
Focillon
,
A.
,
1880
,
Dictionnaire Général Des Sciences Théoriques et Appliquées
,
Delagrave-Garnier
,
Paris
.
7.
Perret
,
A.
,
Hoogerwerf
,
A.
,
Niedermann
,
P.
,
Tang
,
X.-M.
,
Jeanneret
,
S.
,
Clerc
,
P.-A.
,
de Rooij
,
N. F.
, and
Gygax
,
P.
,
2002
, “
Silicon as Material for Mechanical Wristwatches
,”
Symposium on Design, Test, Integration, and Packaging of MEMS/MOEMS 2002
,
Cannes-Mandelieu, France
,
Apr. 19
, pp.
645
647
.
8.
Noell
,
W.
,
Clerc
,
P.-A.
,
Jeanneret
,
S.
,
Hoogerwerf
,
A.
,
Niedermann
,
P.
,
Perret
,
A.
, and
de Rooij
,
N.
,
2004
, “
MEMS for a Watches
,”
17th IEEE International Conference on Micro Electro Mechanical Systems
,
Maastricht, The Netherlands
,
Jan. 25–29
, IEEE, p.
39904
.
9.
Musy
,
J.-P.
,
Maier
,
F.
, and
Krüttli
,
A.
,
2008
, “
Echappement et spiral réalisés en Silinvar®
,”
Journée d'Etude de la Société Suisse de Chronométrie 2008
,
La Chaux-de-Fonds, Switzerland
,
Sept. 17
, pp.
51
54
.
10.
Barrot
,
F.
,
Dubochet
,
O.
,
Henein
,
S.
,
Genequand
,
P.
,
Giriens
,
L.
,
Kjelberg
,
I.
,
Renevey
,
P.
,
Schwab
,
P.
, and
Ganny
,
F.
,
2014
, “
Un nouveau régulateur mécanique pour une réserve de marche exceptionnelle
,”
Journée d’Etude de la Société Suisse de Chronométrie 2014
,
Lausanne, Switzerland
,
Sept. 17
, pp.
43
48
.
11.
Barrot
,
F.
,
Musy
,
G.
,
Cosandier
,
F.
,
Kjelberg
,
I.
,
Renevey
,
P.
,
Giriens
,
L.
,
Schwab
,
P.
,
Genequand
,
P.
,
Petremand
,
Y.
,
Dubochet
,
O.
,
Ganny
,
F.
, and
Hamaguchi
,
T.
,
2015
, “
GENEQUAND, a Novel Watch Regulator Based on Compliant Mechanisms
,” Technical Report.
12.
Eastman
,
F. S.
,
1935
,
Flexure Pivots to Replace Knife Edges and Ball Bearings, an Adaptation of Beam-Column Analysis
(
Engineering Experiment Station Series
),
University of Washington
,
Seattle, WA
.
13.
Cosandier
,
F.
,
Henein
,
S.
,
Richard
,
M.
, and
Rubbert
,
L.
,
2017
,
The Art of Flexure Mechanism Design
,
EPFL Press
,
Lausanne
.
14.
Roszhart
,
T.
,
1990
, “
The Effect of Thermoelastic Internal Friction on the Q of Micromachined Silicon Resonators
,”
IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop
,
Hilton Head, SC
,
June 4–7
.
15.
Thalmann
,
E.
,
2020
,
Flexure Pivot Oscillators for Mechanical Watches
,
Ph.D. Thesis
,
EPFL
,
Lausanne
.
16.
van Beek
,
J. T. M.
, and
Puers
,
R.
,
2011
, “
A Review of MEMS Oscillators for Frequency Reference and Timing Applications
,”
J. Micromech. Microeng.
,
22
(
1
), p.
013001
.
17.
Partridge
,
A.
,
Lee
,
H.
,
Hagelin
,
P.
, and
Menon
,
V.
,
2013
, “
We Know that MEMS is Replacing Quartz. But Why? And Why Now?
2013 Joint European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC)
,
Prague, Czech Republic
,
July 21–25
, pp.
411
416
.
18.
Lee
,
H.
,
Partridge
,
A.
, and
Assaderaghi
,
F.
,
2012
, “
Low Jitter and Temperature Stable MEMS Oscillators
,”
2012 IEEE International Frequency Control Symposium Proceedings
,
Baltimore, MD
,
May 21–24
, pp.
1
5
.
19.
Zaliasl
,
S.
,
Salvia
,
J. C.
,
Hill
,
G. C.
,
Chen
,
L.
,
Joo
,
K.
,
Palwai
,
R.
,
Arumugam
,
N.
,
Phadke
,
M.
,
Mukherjee
,
S.
,
Lee
,
H.
,
Grosjean
,
C.
,
Hagelin
,
P. M.
,
Pamarti
,
S.
,
Fiez
,
T. S.
,
Makinwa
,
K. A. A.
,
Partridge
,
A.
, and
Menon
,
V.
,
2015
, “
A 3 ppm 1.5 × 0.8 mm 2 1.0 μ A 32.768 kHz MEMS-Based Oscillator
,”
IEEE J. Solid-State Circuits
,
50
(
1
), pp.
291
302
.
20.
Hetzel
,
M.
,
1962
, “
Le diapason et son influence sur l’horlogerie
,”
Bull. Ann. Soc. suisse Chronométrie
,
IV-1962
, pp.
666
679
.
21.
Kahrobaiyan
,
M. H.
,
Thalmann
,
E.
,
Rubbert
,
L.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Gravity-Insensitive Flexure Pivot Oscillators
,”
ASME J. Mech. Des.
,
140
(
7
), p.
075002
.
22.
Thalmann
,
E.
,
Kahrobaiyan
,
M. H.
,
Vardi
,
I.
, and
Henein
,
S.
,
2020
, “
Flexure Pivot Oscillator With Intrinsically Tuned Isochronism
,”
ASME J. Mech. Des.
,
142
(
7
), p.
075001
.
23.
Henein
,
S.
, and
Schwab
,
P.
,
2014
, “
Isochronism Corrector for Clockwork Escapement and Escapement Provided With Such a Corrector
,”
Patent No. US8672536B2
.
24.
Wittrick
,
W.
,
1948
, “
The Theory of Symmetrical Crossed Flexure Pivots
,”
Aust. J. Sci. Res. A Phys. Sci.
,
1
, p.
121
.
25.
Di Domenico
,
G.
,
Hinaux
,
B.
,
Klinger
,
L.
, and
Helfer
,
J.-L.
,
2016
, “
Timepiece Resonator With Crossed Blades
,”
Patent No. WO2016096677A1
.
26.
Di Domenico
,
G.
,
Léchot
,
D.
,
Helfer
,
J.-L.
, and
Winkler
,
P.
,
2017
, “
Timepiece Resonator Mechanism
,”
Patent No. EP3206089A1
.
27.
Helfer
,
J.-L.
,
Di Domenico
,
G.
, and
Winkler
,
P.
,
2017
, “
Timepiece Resonator Mechanism
,”
Patent No. EP3200029A1
.
28.
Thalmann
,
E.
,
Kahrobaiyan
,
M. H.
, and
Henein
,
S.
,
2018
, “
Flexure-Pivot Oscillator Restoring Torque Nonlinearity and Isochronism Defect
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
Vol. 5A, ASME
, p.
V05AT07A013
.
29.
Wittrick
,
W.
,
1951
, “
The Properties of Crossed Flexure Pivots, and the Influence of the Point at which the Strips Cross
,”
Aeronaut. Quart.
,
2
(
Feb
), pp.
272
292
.
30.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
31.
Kahrobaiyan
,
M. H.
,
Thalmann
,
E.
, and
Henein
,
S.
,
2020
, “
Flexure Pivot Oscillator Insensitive to Gravity
,”
Patent No. WO2020016131
.
32.
von Gunten
,
S.
,
Gygax
,
P.
, and
Humair
,
L.
,
2015
, “
Oscillateur Mécanique
,”
Patent No. EP2273323B1
.
33.
Ypma
,
W. J. B.
, and
Weeke
,
S. L.
,
2019
, “
Mechanical Watch Oscillator
,”
Patent No. WO2019156552A1
.
34.
Bayat
,
D.
,
Pétremand
,
Y.
, and
Kjelberg
,
I.
,
2018
, “
Timepiece Resonator With Two Balances Arranged to Oscillate in a Single Plane
,”
Patent No. EP3336613A1
.
35.
Conus
,
T.
,
2015
, “
Swatch SISTEM51
,”
Journée d’Etude de la Société Suisse de Chronométrie 2015
,
Lausanne, Switzerland
,
Sept. 16
.
36.
Thalmann
,
E.
, and
Henein
,
S.
,
2019
, “
Conceptual Design of a Rotational Mechanical Time Base With Varying Inertia
,” preprint, engrXiv.
37.
Rawlings
,
A. L.
,
1993
,
The Science of Clocks & Watches
, 3rd and revised ed,
British Horological Institute
,
Upton
.
38.
Reymondin
,
C.-A.
,
Monnier
,
G.
,
Jeanneret
,
D.
, and
Pelaratti
,
U.
,
1999
,
The Theory of Horology
,
Swiss Federation of Technical Colleges
,
Le Locle, Switzerland
.
39.
Huygens
,
C.
,
2007
, “
Horologium Oscillatorium [Latin With English Translation by Ian Bruce]
,” www.17centurymaths.com/contents/huygenscontents.html
40.
Vardi
,
I.
,
2015
, “
Mathematics, the Language of Watchmaking
,”
Watch Around
,
20
, pp.
90
94
.
41.
Grübler
,
M.
,
1917
,
Getriebelehre: Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen
,
Springer-Verlag
,
Berlin
.
42.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
Hoboken, NJ
.
43.
Thalmann
,
E.
, and
Henein
,
S.
,
2020
, “
Rotation–Dilation Coupled Flexure Oscillator With Negative Dilation
,”
[Video File]
.
44.
Thalmann
,
E.
, and
Henein
,
S.
,
2020
, “
Rotation–Dilation Coupled Flexure Oscillator With Positive Dilation
,”
[Video File]
.
45.
Nayfeh
,
A.
, and
Mook
,
D.
,
1995
,
Nonlinear Oscillations
,
Wiley Classics Library
ed.,
Wiley
,
New York
.
46.
Henein
,
S.
,
2000
,
Conception des structures articulées à guidages flexibles de haute précision
,
Ph.D. Thesis
,
EPFL
,
Lausanne
.
47.
ansys
,
2018
, “
ansys® Workbench, Release 19.2, ANSYS Workbench User’s Guide
.”
48.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
49.
Xu
,
Q.
,
2017
, “
Design and Development of a Novel Compliant Gripper With Integrated Position and Grasping/Interaction Force Sensing
,”
IEEE Trans. Automat. Sci. Eng.
,
14
(
3
), pp.
1415
1428
.
You do not currently have access to this content.