Abstract

One of the current challenges for the additive manufacturing (AM) industry lies in providing component designs compatible with the AM manufacturability and constraints without compromising the component structural functionalities. To address this challenge, we present an automated correction system that provides geometrically feasible designs for additive processes by applying locally effective modifications while avoiding substantial changes in the current designs. Considering a minimum printable feature size from the process parameters, this system identifies the problematic features in an infeasible part’s design using a holistic geometric assessment algorithm. Based on the obtained manufacturability feedback, the system then corrects the detected problematic regions using a set of appropriate redesign solutions through an automated procedure. In addition, to reduce the difference between the current and modified part geometries, a novel optimization model for build orientation is presented. By using this model, one can identify appropriate orientations for obtaining a feasible design with a minimal amount of corrections while also reducing the postprocessing effort by minimizing the area of contact with the support structure. The functionalities of the presented correction system and the optimization model are illustrated using a number of case studies with varying geometries. The computational performance of the system and an experimental validation are also presented to demonstrate the effectiveness of the implemented detection and modification approaches.

References

1.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
.
2.
Ponche
,
R.
,
Hascoët
,
J. Y.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2012
, “
A New Global Approach to Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
7
(
2
), pp.
93
105
.
3.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J. Y.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Robot. Comput. Integr. Manufact.
,
30
(
4
), pp.
389
98
.
4.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
,
Carr
,
N.
, and
Měch
,
R.
,
2012
, “
Stress Relief: Improving Structural Strength of 3D Printable Objects
,”
ACM Trans. Graph. (TOG)
,
31
(
4
), p.
48
.
5.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2016
, “
A New Methodological Framework for Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
11
(
1
), pp.
3
19
.
6.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
(
1
), pp.
632
637
.
7.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
.
8.
Doubrovski
,
Z.
,
Verlinden
,
J. C.
, and
Geraedts
,
J. M.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington DC
,
American Society of Mechanical Engineers
, Paper No. DETC2011-48131.
9.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
.
10.
Tang
,
Y.
,
Tang
,
Y.
,
Zhao
,
Y. F.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid. Prototyp. J.
,
22
(
3
), pp.
569
590
.
11.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
.
12.
Yang
,
S.
,
Santoro
,
F.
, and
Zhao
,
Y. F.
,
2018
, “
Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041701
.
13.
Asadollahi-Yazdi
,
E.
,
Gardan
,
J.
, and
Lafon
,
P.
,
2020
, “
Toward Integrated Design of Additive Manufacturing Through a Process Development Model and Multi-Objective Optimization
,”
Int. J. Adv. Manuf. Technol.
,
21
(
96
), pp.
9
12
.
14.
Renjith
,
S. C.
,
Park
,
K.
, and
Kremer
,
G.
,
2020
, “
A Design Framework for Additive Manufacturing: Integration of Additive Manufacturing Capabilities in the Early Design Process
,”
Int. J. Precis. Eng. Manuf.
,
21
(
2
), pp.
329
345
.
15.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
.
16.
Barnard
,
L.
,
2008
, “
Designing for Laser Sintering
,”
J. New Generat. Sci.
,
6
(
2
), pp.
47
59
.
17.
Seepersad
,
C. C.
,
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
A Designer’s Guide for Dimensioning and Tolerancing SLS Parts
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
921
931
.
18.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP. J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
19.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in Tial6v4
,”
J. Laser. Appl.
,
27
(
S1
), p.
S14001
.
20.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
.
21.
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Paris
,
H.
,
Mbow
,
M. M.
,
Pourroy
,
F.
,
Marin
,
R. R.
,
Vihinen
,
J.
, and
Ellman
,
A. A.
,
2018
, “
A Conceptual Design and Modeling Framework for Integrated Additive Manufacturing
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081101
.
22.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3D-Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
,
1
, pp.
64
76
.
23.
Tedia
,
S.
, and
Williams
,
C. B.
,
2016
, “
Manufacturability Analysis Tool for Additive Manufacturing Using Voxel-Based Geometric Modeling
,”
27th Annual International Solid Freeform Fabrication (SFF) Symposium
,
Austin, TX
,
Aug. 6–10
, pp.
3
22
.
24.
Shi
,
Y.
,
Zhang
,
Y.
,
Baek
,
S.
,
Backer
,
W. D.
, and
Harik
,
R.
,
2018
, “
Manufacturability Analysis for Additive Manufacturing Using a Novel Feature Recognition Technique
,”
Comput. Aided Des. Appl.
,
15
(
6
), pp.
941
952
.
25.
Budinoff
,
H. D.
,
McMains
,
S.
, and
Rinaldi
,
A.
,
2018
, “
An Interactive Manufacturability Analysis and Tolerance Allocation Tool for Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
American Society of Mechanical Engineers
, Paper No. DETC2018-86344.
26.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2019
, “
A Preference-Based Approach to Assess a Component’s Design Readiness for Additive Manufacturing
,”
ASME J. Mech. Des.
,
142
(
8
), p.
082001
.
27.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-printing of Non-Assembly, Articulated Models
,”
ACM Transactions on Graphics (TOG)
,
31
(
6
), p.
130
.
28.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3D-Printable Parts
,”
ACM Trans. Graph.
,
31
(
6
), pp.
1
9
.
29.
Lindemann
,
C.
,
Reiher
,
T.
,
Jahnke
,
U.
, and
Koch
,
R.
,
2015
, “
Towards a Sustainable and Economic Selection of Part Candidates for Additive Manufacturing
,”
Rapid. Prototyp. J.
,
21
(
2
), pp.
216
27
.
30.
Prévost
,
R.
,
Whiting
,
E.
,
Lefebvre
,
S.
, and
Sorkine-Hornung
,
O.
,
2013
, “
Make It Stand: Balancing Shapes for 3D Fabrication
,”
ACM Trans. Graph. (TOG)
,
32
(
4
), pp.
1
10
.
31.
Behandish
,
M.
,
Mirzendehdel
,
A.
, and
Nelaturi
,
S.
,
2019
, “
A Classification of Topological Discrepancies in Additive Manufacturing
,”
Comput. Aided Des.
,
115
, pp.
206
217
.
32.
Ulu
,
E.
,
Ulu
,
N. G.
,
Hsiao
,
W.
, and
Nelaturi
,
S.
,
2020
, “
Manufacturability Oriented Model Correction and Build Direction Optimization for Additive Manufacturing
,”
ASME J. Mech. Des.
,
142
(
6
), p.
062001
.
33.
Kim
,
S.
,
Rosen
,
D. W.
,
Witherell
,
P.
, and
Ko
,
H.
,
2019
, “
A Design for Additive Manufacturing Ontology to Support Manufacturability Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041014
.
34.
Cohen-Or
,
D.
, and
Kaufman
,
A.
,
1995
, “
Fundamentals of Surface Voxelization
,”
Graphical Models Image Processing
,
57
(
6
), pp.
453
461
.
35.
Hart
,
J. C.
,
Sandin
,
D. J.
, and
Kauffman
,
L. H.
,
1989
, “
Ray Tracing Deterministic 3D Fractals
,”
ACM SIGGRAPH Computer Graphics, Vol. 23
,
New York
,
July
, pp.
289
296
.
36.
Dong
,
Z.
,
Chen
,
W.
,
Bao
,
H.
,
Zhang
,
H.
, and
Peng
,
Q.
,
2004
, “
Real-Time Voxelization for Complex Polygonal Models
,”
12th Pacific Conference in Computer Graphics and Applications, IEEE
,
Seoul, South Korea
,
Oct. 6–8
, pp.
43
50
.
37.
Greene
,
N.
,
1989
, “
Voxel Space Automata: Modeling With Stochastic Growth Processes in Voxel Space
,”
ACM SIGGRAPH Computer Graphics, Vol. 23
,
New York
,
July
, pp.
175
184
.
38.
Telea
,
A.
, and
Jalba
,
A.
,
2011
, “Voxel-Based Assessment of Printability of 3D Shapes,”
Mathematical Morphology and Its Applications to Image and Signal Processing. ISMM 2011. Lecture Notes in Computer Science
, Vol.
6671
,
P.
Soille
,
M.
Pesaresi
,
and G.K.
Ouzounis
, eds.,
Springer
,
Berlin, Heidelberg.
, pp.
393
404
.
39.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2018
, “
From Conventional to Additive Manufacturing: Determining Component Fabrication Feasibility
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
American Society of Mechanical Engineers
, Paper No. DETC2018-86238.
40.
Forstmann
,
S.
, and
Ohya
,
J.
,
2010
, “
Efficient, High-Quality, GPU-Based Visualization of Voxelized Surface Data With Fine and Complicated Structures
,”
IEICE Trans. Inform. Syst.
,
93
(
11
), pp.
3088
3099
.
41.
Maragos
,
P.
,
1996
, “
Differential Morphology and Image Processing
,”
IEEE Trans. Image Process.
,
5
(
6
), pp.
922
937
.
42.
Brockett
,
R. W.
, and
Maragos
,
P.
,
1994
, “
Evolution Equations for Continuous-Scale Morphological Filtering
,”
IEEE Trans. Signal Process.
,
42
(
12
), pp.
3377
3386
.
43.
Ghiasian
,
S. E.
, and
Lewis
,
K.
,
2020
, “
A Machine Learning-Based Design Recommender System for Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
American Society of Mechanical Engineers
, Paper No. IDETC2020-22182.
44.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2019
, “
A Design Modification System for Additive Manufacturing: Towards Feasible Geometry Development
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
American Society of Mechanical Engineers
, Paper No. DETC2019-97840.
45.
Srinivasan
,
R.
,
Pridhar
,
T.
,
Ramprasath
,
L. S.
,
Charan
,
N. S.
, and
Ruban
,
W.
,
2020
, “
Prediction of Tensile Strength in FDM Printed ABS Parts Using Response Surface Methodology (RSM)
,”
Mater. Today Proc.
,
27
(
2
), pp.
1827
1832
.
46.
Abid
,
S.
,
Messadi
,
R.
,
Hassine
,
T.
,
Daly
,
H. B.
,
Soulestin
,
J.
, and
Lacrampe
,
M. F.
,
2019
, “
Optimization of Mechanical Properties of Printed Acrylonitrile Butadiene Styrene Using RSM Design
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1363
1372
.
47.
Zhuang
,
J. R.
,
Lee
,
Y. T.
,
Hsieh
,
W. H.
, and
Yang
,
A. S.
,
2018
, “
Determination of Melt Pool Dimensions Using DOE-FEM and RSM With Process Window During SLM of Ti6Al4V Powder
,”
Opt. Laser Technol.
,
103
, pp.
59
76
.
48.
Couto
,
N.
,
Silva
,
V.
,
Cardoso
,
J.
,
González-Gutiérrez
,
L. M.
, and
Souto-Iglesias
,
A.
,
2018
, “
Coupled CFD-Response Surface Method (RSM) Methodology for Optimizing Jettability Operating Conditions
,”
Chem. Engin.
,
2
(
4
), p.
51
.
49.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
(
Probability and Statistics Series
),
John Wiley & Sons
,
New York
.
50.
Ahmed
,
M. O.
,
Masood
,
S. H.
, and
Bhowmik
,
J. L.
,
2016
, “
Mathematical Modeling and FDM Process Parameters Optimization Using Response Surface Methodology Based on Q-Optimal Design
,”
Appl. Math. Model.
,
40
(
23–24
), pp.
10052
10073
.
You do not currently have access to this content.