Abstract

High power density in-wheel motor could be achieved by integrating a high-speed ratio (larger than 25) compound power-split mechanism (CPSM) with small motors. However, due to the exhaustive searching method adopted by the traditional lever analogy method, it is time-consuming to design high-speed ratio compound power-split mechanism configurations satisfying the high power density of in-wheel motor. In this paper, an improved lever analogy method is proposed to find the optimal configurations with a high-speed ratio to satisfy the high power density in-wheel motor. In this method, a judgment algorithm about the rank of structure matrix is proposed to identify three-node compound lever models of the CPSM. The improved lever analogy method can filter out useless configurations that significantly improve the calculation efficiency. The simulation results show that the calculation efficiency is improved by 215 times higher than that of the lever analogy method. Finally, 16 reasonable and 14 new configurations are obtained. This indicates that the improved lever analogy method can provide an effective way to design the high-speed ratio CPSM, which is widely used in-wheel motor-driven vehicles.

References

1.
Hori
,
Y.
,
2004
, “
Future Vehicle Driven by Electricity and Control Research On Four-Wheel Motored, ‘UOT Electric March II’
,”
IEEE Trans. Ind. Electron.
,
51
(
5
), pp.
954
962
. 10.1109/TIE.2004.834944
2.
Lei
,
F.
,
Bai
,
Y. C.
,
Zhu
,
W. H.
, and
Liu
,
J. H.
,
2019
, “
A Novel Approach for Electric Powertrain Optimization Considering Vehicle Power Performance, Energy Consumption And Ride Comfort
,”
Energy
,
167
, pp.
1040
1050
. 10.1016/j.energy.2018.11.052
3.
Watts
,
A.
,
Vallance
,
A.
,
Whitehead
,
A.
,
Hilton
,
C.
, and
Fraser
,
A.
,
2010
, “
The Technology and Economics of In-Wheel Motors
,”
SAE Int. J. Passeng. Cars-Electron. Electr. Syst.
,
3
(
2
), pp.
37
55
. 10.4271/2010-01-2307
4.
Yan
,
H. S.
, and
Wu
,
Y. C.
,
2006
, “
A Novel Configuration for A Brushless DC Motor with an Integrated Planetary Gear Train
,”
J. Magn. Magn. Mater.
,
301
(
2
), pp.
532
540
. 10.1016/j.jmmm.2005.07.031
5.
Gunji
,
D.
,
Matsuda
,
Y.
, and
Kimura
,
G.
,
2014
, “
Wheel Hub Motor
,” US, No. 008758178B22014-06-24.
6.
Yamamoto
,
S.
,
Morita
,
R.
, and
Oike
,
M.
,
2018
, “
Transmission-equipped Wheel Hub Motor for Passenger Cars
,”
MTZ worldw.
,
79
(
6
), pp.
54
58
. 10.1007/s38313-018-0047-z
7.
Gu
,
J. D.
,
Zhao
,
Z. G.
,
Chen
,
Y.
,
He
,
L.
, and
Zhan
,
X. W.
,
2020
, “
Integrated Optimal Design of Configuration and Parameter of Multimode Hybrid Powertrain System with Two Planetary Gears
,”
Mech. Mach. Theory
,
143
, p.
103630
. 10.1016/j.mechmachtheory.2019.103630
8.
Zhang
,
F. T.
,
Yang
,
F. Y.
,
Xue
,
D. L.
, and
Cai
,
Y. C.
,
2019
, “
Optimization of Compound Power Split Configurations in PHEV Bus for Fuel Consumption and Battery Degradation Decreasing
,”
Energy
,
169
, pp.
937
957
. 10.1016/j.energy.2018.12.059
9.
Zeng
,
X. H.
, and
Wang
,
J. X.
,
2018
,
Analysis and Design of the Power-Split Device for Hybrid Systems
,
Beijing Institute of Technology Press
,
Beijing
.
10.
Barhoumi
,
T.
,
Kim
,
H. J.
, and
Kum
,
D. S.
,
2017
, “
Compound Lever Based Optimal Configuration Selection of Compound-Split Hybrid Vehicles
,”
SAE Technical Paper No. 2017-01-1148
.
11.
Barhoumi
,
T.
,
Kim
,
H. J.
, and
Kum
,
D. S.
,
2018
, “
Automatic Generation of Design Space Conversion Maps and Its Application for the Design of Compound Split Hybrid Powertrains
,”
ASME J. Mech. Des.
,
140
(
6
), p.
063401
. 10.1115/1.4039451
12.
Wang
,
W. H.
,
Song
,
R. F.
,
Guo
,
M. C.
, and
Liu
,
S. S.
,
2014
, “
Analysis on Compound-Split Configuration of Power-Split Hybrid Electric Vehicle
,”
Mech. Mach. Theory
,
78
, pp.
272
288
. 10.1016/j.mechmachtheory.2014.03.019
13.
Zhuang
,
W. C.
,
Zhang
,
X. W.
,
Peng
,
H.
, and
Wang
,
L. M.
,
2016
, “
Rapid Configuration Design of Multiple-Planetary-Gear Power-Split Hybrid Powertrain via Mode Combination
,”
IEEE/ASME Trans. Mechatron.
,
21
(
6
), pp.
2924
2934
. 10.1109/TMECH.2016.2575359
14.
Liao
,
Y. G.
, and
Chen
,
M. Y.
,
2017
, “
Analysis of Multi-Speed Transmission and Electrically Continuous Variable Transmission Using Lever Analogy Method for Speed Ratio Determination
,”
Adv. Mech. Eng.
,
9
(
8
). 10.1177/1687814017712948
15.
Mathis
,
R.
, and
Rémond
,
Y.
,
1999
, “
A New Approach to Solving the Inverse Problem for Compound Gear Trains
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
98
106
. 10.1115/1.2829436
16.
Xu
,
X. Y.
,
Sun
,
H. Q.
,
Liu
,
Y. F.
, and
Dong
,
P.
,
2020
, “
Matrix-Based Operation Method for Detecting Structural Isomorphism of Planetary Gear Train Structures
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063301
. https://doi.org/10.1115/1.4044916
17.
Xie
,
T. L.
,
Hu
,
J. B.
,
Peng
,
Z. X.
, and
Liu
,
C. W.
,
2015
, “
Synthesis of Seven-Speed Planetary Gear Trains for Heavy-Duty Commercial Vehicle
,”
Mech. Mach. Theory
,
90
, pp.
230
239
. 10.1016/j.mechmachtheory.2014.12.012
18.
Barhoumi
,
T.
, and
Kum
,
D. S.
,
2017
, “
Automatic Enumeration of Feasible Kinematic Diagrams for Split Hybrid Configurations with a Single Planetary Gear
,”
ASME J. Mech. Des.
,
139
(
8
), p.
083301
. 10.1115/1.4036583
19.
Xu
,
X. Y.
,
Sun
,
H. Q.
,
Liu
,
Y. F.
, and
Dong
,
P.
,
2019
, “
Automatic Enumeration of Feasible Configuration for The Dedicated Hybrid Transmission with Multi-Degree-of-Freedom and Multi-Planetary Gear Set
,”
ASME J. Mech. Des.
,
141
(
9
), p.
093301
. 10.1115/1.4042846
20.
Attibele
,
P.
,
2020
, “
A New Approach to Understanding Planetary Gear Train Efficiency and Powerflow
,”
SAE Technical Paper No.2020-01-0432
.
21.
García
,
P. L.
,
Crispel
,
S.
,
Saerens
,
E.
,
Verstraten
,
T.
, and
Lefeber
,
D.
,
2020
, “
Compact Gearboxes for Modern Robotics: A Review
,”
Front. Robot. AI
,
7
, p.
103
. 10.3389/frobt.2020.00103
22.
Chang
,
I.
, and
Chang
,
J.
,
2021
, “
Design of High Ratio Gear Reducer Using Vernier Differential Theory
,”
ASME J. Mech. Des.
,
143
(
2
), p.
023401
. https://doi.org/10.1115/1.4047347
23.
Hoang
,
N. T.
, and
Yan
,
H. S.
,
2017
, “
Configuration Synthesis of Novel Series-Parallel Hybrid Transmission Systems With Eight-Bar Mechanisms
,”
Energies
,
10
(
7
), p.
1044
. 10.3390/en10071044
You do not currently have access to this content.