Abstract

A full-range prediction model for turbomachinery based on the flow-field information code is established in this article to solve the problems that traditional models do not have enough prediction accuracy and cannot reflect the complete performance characteristics of the impeller. The model, which can predict the complete performance curve of the impeller with higher accuracy, consists of two multilayer artificial neural network (ANN) submodels. Different from the traditional model, the ANN submodel uses the flow-field information code for pretraining layer by layer. The flow-field information code is the characteristic information extracted from the impeller flow field through the proper orthogonal decomposition (POD) method. By implicitly learning the flow-field information, the prediction error of the model is reduced by 29.7% compared with the single hidden layer ANN. Based on this model, the nonaxisymmetric, but periodic, hub optimization of a centrifugal impeller with 30 variables is carried out, with the goals of the higher efficiency and the wider flow range at the specified pressure ratio and the massflow rate at the design point. The result shows that, after the optimization, the isentropic efficiency at the design point increases by 1% and the flow range increases by 2% compared to the baseline.

References

1.
Ibaraki
,
S.
,
Matsuo
,
T.
,
Kuma
,
H.
,
Sumida
,
K.
, and
Suita
,
T.
,
2003
, “
Aerodynamics of a Transonic Centrifugal Compressor Impeller
,”
ASME J. Turbomach.
,
125
(
2
), pp.
346
351
.
2.
Higashimori
,
H.
,
Hasagawa
,
K.
,
Sumida
,
K.
, and
Suita
,
T.
,
2004
, “
Detailed Flow Study of Mach Number 1.6 High Transonic Flow With a Shock Waye in a Pressure Ratio 11 Centrifugal Compressor Impeller
,”
ASME J. Turbomach.
,
126
(
4
), pp.
473
481
.
3.
Ibaraki
,
S.
,
Matsuo
,
T.
, and
Yokoyama
,
T.
,
2007
, “
Investigation of Unsteady Flow Field in a Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
129
(
4
), pp.
686
693
.
4.
Bulot
,
N.
,
Trébinjac
,
I.
,
Ottavy
,
X.
,
Kulisa
,
P.
,
Halter
,
G.
,
Paoletti
,
B.
, and
Krikorian
,
P.
,
2009
, “
Experimental and Numerical Investigation of the Flow Field in a High-Pressure Centrifugal Compressor Impeller Near Surge
,”
Proc. Instit. Mech. Eng., Part A: J. Power Energy
,
223
(
6
), pp.
657
666
.
5.
Rodgers
,
C.
,
2005
, “
Flow Ranges of 8.0: 1 Pressure Ratio Centrifugal Compressors for Aviation Applications
,”
ASME Turbo Expo: Power for Land, Sea, and Air
,
Reno-Tahoe, NV
,
June 6–9
, Vol. 47306, pp.
801
811
.
6.
Wang
,
X.
,
Xi
,
G.
, and
Wang
,
Z.
,
2006
, “
Aerodynamic Optimization Design of Centrifugal Compressor’s Impeller With Kriging Model
,”
Proc. Instit. Mech. Eng., Part A: J. Power Energy
,
220
(
6
), pp.
589
597
.
7.
Ibaraki
,
S.
,
Tomita
,
I.
, and
Sugimoto
,
K.
,
2015
, “
Aerodynamic Design Optimization of Centrifugal Compressor Impeller Based on Genetic Algorithm and Artificial Neural Network
,”
Mitsubishi Heavy Indus. Tech. Rev.
,
52
(
1
), p.
77
.
8.
Cho
,
S.-Y.
,
Ahn
,
K.-Y.
,
Lee
,
Y.-D.
, and
Kim
,
Y.-C.
,
2012
, “
Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms
,”
Math. Probl. Eng.
,
2012
(
1
), p.
752931
.
9.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
.
10.
Li
,
X.
,
Liu
,
Z.
, and
Lin
,
Y.
,
2017
, “
Multipoint and Multiobjective Optimization of a Centrifugal Compressor Impeller Based on Genetic Algorithm
,”
Math. Probl. Eng.
,
2017
(
1
), p.
6263274
.
11.
Li
,
X.
,
Zhao
,
Y.
, and
Liu
,
Z.
,
2019
, “
A Novel Global Optimization Algorithm and Data-mining Methods for Turbomachinery Design
,”
Struct. Multidiscipl. Optim.
,
60
(
2
), pp.
581
612
.
12.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031708
.
13.
Alizadeh
,
M.
,
Esfahani
,
M. N.
,
Tian
,
W.
, and
Ma
,
J.
,
2019
, “
Data-Driven Energy Efficiency and Part Geometric Accuracy Modeling and Optimization of Green Fused Filament Fabrication Processes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
041701
.
14.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
15.
Zhang
,
Y.
,
Li
,
M.
,
Zhang
,
J.
, and
Li
,
G.
,
2016
, “
Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111405
.
16.
Hartland
,
J.
,
Gregory-Smith
,
D.
, and
Rose
,
M.
,
1998
,
Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade
, Vol.
78620
,
American Society of Mechanical Engineers
,
New York
.
17.
Rehman
,
A.
,
Liu
,
B.
,
Na
,
Z.
, and
Cheng
,
H.
,
2018
, “
Non-Axisymmetric Endwall Profiling of a Stator Row in the Presence of the Rotor in a High Pressure Turbine
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, Vol.
51005
,
American Society of Mechanical Engineers
, p.
V02BT41A017
.
18.
Schmid
,
J.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2018
, “
Influence of a Non-Axisymmetric Endwall on the Flow Field in a Turbine Passage: High-Resolution LDV
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, Vol.
51005
,
American Society of Mechanical Engineers
, p.
V02BT41A001
.
19.
Bergh
,
J.
,
Snedden
,
G.
, and
Dunn
,
D.
,
2020
, “
Optimization of Non-Axisymmetric Endwall Contours for the Rotor of a Low Speed, 112-Stage Research Turbine With Unshrouded Blades—Optimization and Experimental Validation
,”
ASME J. Turbomach.
,
142
(
4
), p.
041006
.
20.
Krain
,
H.
, and
Hoffmann
,
B.
,
2008
, “
Flow Study of a Redesigned High-Pressure-Ratio Centrifugal Compressor
,”
J. Propul. Power.
,
24
(
5
), pp.
1117
1123
.
21.
Shun
,
K.
, and
Liping
,
S.
,
2009
, “
Influence of Root Fillet on the Aerodynamic Performance of Centrifugal Impeller
,”
J. Eng. Thermophys.
,
30
(
1
), pp.
41
43
.
22.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
23.
Deb
,
K.
,
2001
,
Multi-objective Optimization Using Evolutionary Algorithms
, Vol.
16
,
John Wiley & Sons
,
Hoboken, NJ
.
You do not currently have access to this content.