Abstract

A limaçon machine is a rotary positive displacement device, in which the housing and rotor are constructed of limaçon of Pascal curves. Previous works have been published to investigate the working of these machines in two applications: gas expanders and compressors. This article presents a theoretical investigation into the potential of modifying the rotor profile of the limaçon machines to simplify the machine’s manufacturing process and to reduce production cost. The proposed modification will produce new characteristics for the housing–rotor interaction. An outcome that motivates the need to obtain new mathematical models to investigate the housing–rotor interference and describe the volumetric relationship of the new machine. This article also employs an optimization approach to design the best machine for a given set of operating conditions, i.e., expander, compressor, and pump. The outcome of this study confirms the validity of the proposed modification and its potential to produce a limaçon machine with favorable characteristics.

References

1.
Kim
,
W.
, and
Kim
,
H.
,
2011
, “
Applicability of Scroll Expander and Compressor to an External Power Engine: Conceptual Design and Performance Analysis
,”
Int. J. Energy Res.
,
36
(
3
), pp.
385
396
.
2.
Oralli
,
E.
,
Tarique
,
M.
,
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2011
, “
A Study on Scroll Compressor Conversion Into Expander for Rankine Cycles
,”
Int. J. Low-Carbon Technol.
,
6
(
3
), pp.
200
206
.
3.
Georges
,
E.
,
Declaye
,
S.
,
Dumont
,
O.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2013
, “
Design of a Small-Scale Organic Rankine Cycle Engine Used in a Solar Power Plant
,”
Int. J. Low-Carbon Technol.
,
8
(
1
), pp.
i34
i41
.
4.
Jia
,
X.
,
Zhang
,
B.
,
Yang
,
B.
, and
Peng
,
X.
,
2009
, “
Study of a Rotary Vane Expander for the Transcritical CO2 Cycle—Part II: Theoretical Modeling
,”
HVAC&R Res.
,
15
(
4
), pp.
689
709
.
5.
Subiantoro
,
A.
, and
Tiow
,
O.
,
2009
, “
Introduction of the Revolving Vane Expander
,”
HVAC&R Res.
,
15
(
4
), pp.
801
816
.
6.
Sultan
,
I.
,
2006
, “
Profiling Rotors for Limaçon-to-Limaçon Compression-Expansion Machines
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
787
793
.
7.
Sultan
,
I.
,
2007
, “
A Surrogate Model for Interference Prevention in the Limaçon-to-Limaçon Machines
,”
Eng. Comput.
,
24
(
5
), pp.
437
449
.
8.
Sultan
,
I.
,
2008
, “
A Geometric Design Model for the Circolimaçon Positive Displacement Machine
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062307
.
9.
Sultan
,
I.
, and
Schaller
,
C.
,
2011
, “
Optimum Positioning of Ports in the Limaçon Gas Expanders
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
103002
.
10.
Wheildon
,
W. M.
,
1896
,
United States Patent 553086
.
11.
Sultan
,
I.
,
2005
, “
The Limaçon of Pascal: Mechanical Generation and Utilization for Fluid Processing
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
219
(
8
), pp.
813
822
.
12.
Costa
,
S. I. R.
,
Grou
,
M. A.
, and
Figueiredo
,
V.
,
1998
, “
Mechanical Curves—A Kinematic Greek Look Through the Computer
,”
Int. J. Math. Edu. Sci. Tech.
,
30
(
3
), pp.
459
468
.
13.
Spall
,
J. C.
,
1987
, “
A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates
,”
Proceedings of American Control Conference
,
Minneapolis, MN
,
June
, pp.
1161
1167
.
14.
Spall
,
J.
,
1992
, “
Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation
,”
IEEE Trans. Autom. Control
,
37
(
3
), pp.
332
341
.
15.
Spall
,
J.
,
1998
, “
Implementation of the Simultaneous Perturbation Algorithm for Stochastic Optimization
,”
IEEE Trans. Aerosp. Electron. Syst.
,
34
(
3
), pp.
817
823
.
16.
Spall
,
J.
,
2000
, “
Adaptive Stochastic Approximation by the Simultaneous Perturbation Method
,”
IEEE Trans. Autom. Control
,
45
(
10
), pp.
1839
1853
.
17.
Bartkutė
,
V.
, and
Sakalauskas
,
L.
,
2007
, “
Simultaneous Perturbation Stochastic Approximation of Nonsmooth Functions
,”
Eur. J. Oper. Res.
,
181
(
3
), pp.
1174
1188
.
18.
Spall
,
J. C.
,
2012
, “Stochastic Optimisation,”
Handbook of Computational and Statistics: Concepts and Methods
,
J. E.
Gentle
,
W. K.
Hardle
, and
Y.
Mori
, eds.,
Springer
, chap. 7, pp.
173
201
.
19.
Wang
,
Q.
,
2013
, “
Optimisation With Discrete Simultaneous Perturbation Stochastic Optimisation Using Noisy Loss Function Measurements
,”
PhD thesis
,
Johns Hopkins University
,
Baltimore, MD
.
20.
Altaf
,
M.
,
Heemink
,
A.
,
Verlaan
,
M.
, and
Hoteit
,
I.
,
2011
, “
Simultaneous Perturbation Stochastic Approximation for Tidal Models
,”
Ocean Dyn.
,
61
(
8
), pp.
1093
1105
.
21.
Abdulsadda
,
A.
, and
Iqbal
,
K.
,
2011
, “
An Improved SPSA Algorithm for System Identification Using Fuzzy Rules for Training Neural Networks
,”
Int. J. Autom. Comput.
,
8
(
3
), pp.
333
339
.
22.
Cao
,
X.
,
2011
, “
Preliminary Results on Non-Bernoulli Distribution of Perturbations for Simultaneous Perturbation Stochastic Approximation
,”
American Control Conference
,
San Francisco, CA
,
June–July
, pp.
2669
2670
.
23.
Spall
,
J. C.
,
2003
,
Introduction to Stochastic Search and Optimisation—Estimation, Simulation, and Control
,
John Wiley & Sons
,
Hoboken, NJ
.
24.
Kothandaraman
,
G.
, and
Rotea
,
M.
,
2005
, “
Simultaneous-Perturbation-Stochastic-Approximation Algorithm for Parachute Parameter Estimation
,”
J. Aircr.
,
42
(
5
), pp.
1229
1235
.
You do not currently have access to this content.