Abstract

As a kind of imprecise probabilistic model, probability-box (P-box) model can deal with both aleatory and epistemic uncertainties in parameters effectively. The P-box can generally be categorized into two classes, namely, parameterized P-box and non-parameterized P-box. Currently, the researches involving P-boxes mainly aim at the parameterized P-box, while the works handling the non-parameterized P-box are relatively inadequate. This paper proposes an efficient uncertainty propagation analysis method based on cumulative distribution function discretization (CDFD) for problems with non-parameterized P-boxes, through which the bounds of statistical moments and the cumulative distribution function (CDF) of a response function with non-parameterized P-box variables can be obtained. First, a series of linear programming models are established for acquiring the lower and upper bounds of the first four origin moments of the response function. Second, based on the bounds of the origin moments, the CDF bounds for the response function can be obtained using Johnson distributions fitting and an optimization approach based on percentiles. Finally, the accuracy and efficiency of the proposed method are verified by investigating two numerical examples.

References

1.
Cinlar
,
E.
,
1975
,
Introduction to Stochastic Processes
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York
.
3.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
4.
Wang
,
Y.
,
Hao
,
P.
,
Guo
,
Z.
,
Liu
,
D.
, and
Gao
,
Q.
,
2020
, “
Reliability-Based Design Optimization of Complex Problems With Multiple Design Points Via Narrowed Search Region
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061702
.
5.
Coolen
,
F. P. A.
, and
Newby
,
M. J.
,
1994
, “
Bayesian Reliability Analysis With Imprecise Prior Probabilities
,”
Reliab. Eng. Syst. Saf.
,
43
(
1
), pp.
75
85
.
6.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
1995
,
Bayesian Data Analysis
,
Chapman and Hall
,
London
.
7.
Ferson
,
S.
,
Kreinovich
,
V.
,
Ginzburg
,
L.
,
Myers
,
S. D.
, and
Sentz
,
K.
,
2003
, “
Constructing Probability Boxes and Dempster Shafer structures
,”
Sandia National Laboratories, Albuquerque, NM, Report No. SAND2002-4015
.
8.
Faes
,
M. G. R.
,
Daub
,
M.
, and
Beer
,
M.
,
2020
, “
Engineering Analysis With Imprecise Probabilities: A State-of-the-Art Review
on
P-Boxes
,”
The Seventh Asian-Pacific Symposium on Structural Reliability and Its Applications (APSSRA2020)
,
Tokyo, Japan
,
Oct. 4–7
.
9.
Sadeghi
,
J.
,
de Angelis
,
M.
, and
Patelli
,
E.
,
2020
, “
Robust Propagation of Probability Boxes by Interval Predictor Models
,”
Struct. Saf.
,
82
, p.
101889
.
10.
Dubois
,
D.
, and
Prade
,
H.
,
1991
, “
Random Sets and Fuzzy Interval Analysis
,”
Fuzzy Sets Syst.
,
42
(
1
), pp.
87
101
.
11.
Molchanov
,
I. S.
,
2005
,
Theory of Random Sets
,
Springer
,
London
.
12.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton
.
13.
Yager
,
R.
,
Fedrizzi
,
M.
, and
Kacprzyk
,
J.
,
1994
,
Advances in the Dempster-Shafer Theory of Evidence
,
John Wiley & Sons
,
New York
.
14.
Cao
,
L.
,
Liu
,
J.
,
Jiang
,
C.
,
Wu
,
Z.
, and
Zhang
,
Z.
,
2020
, “
Evidence-Based Structural Uncertainty Quantification by Dimension Reduction Decomposition and Marginal Interval Analysis
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051701
.
15.
Möller
,
B.
, and
Beer
,
M.
,
2004
,
Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics
,
Springer
,
Berlin
.
16.
Bruns
,
M.
, and
Paredis
,
C. J. J.
,
2006
, “
Numerical Methods for Propagating Imprecise Uncertainty
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Pennsylvania
,
Sept. 10–13
, pp.
1077
1091
.
17.
Rekuc
,
S. J.
,
Aughenbaugh
,
J. M.
,
Bruns
,
M.
, and
Paredis
,
C. J. J.
,
2006
, “
Eliminating Design Alternatives Based on Imprecise Information
,”
SAE Trans.
,
115
, pp.
208
220
.
18.
Ferson
,
S.
, and
Donald
,
S.
,
1998
, “
Probability Bounds Analysis
,”
Proceedings of International Conference on Probabilistic Safety Assessment and Management (PSAM4)
,
Spring-Verlag
, pp.
1203
1208
.
19.
Ghosh
,
D. D.
, and
Olewnik
,
A.
,
2013
, “
Computationally Efficient Imprecise Uncertainty Propagation
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051002
.
20.
Xiao
,
Z.
,
Han
,
X.
,
Jiang
,
C.
, and
Yang
,
G.
,
2016
, “
An Efficient Uncertainty Propagation Method for Parameterized Probability Boxes
,”
Acta Mech.
,
227
(
3
), pp.
633
649
.
21.
Liu
,
H. B.
,
Jiang
,
C.
, and
Xiao
,
Z.
,
2020
, “
Efficient Uncertainty Propagation for Parameterized P-Box Using Sparse-Decomposition-Based Polynomial Chaos Expansion
,”
Mech. Syst. Signal Proc.
,
138
, p.
106589
.
22.
Ferson
,
S.
,
2001
, “
Probability Bounds Analysis Solves the Problem of Incomplete Specification in Probabilistic Risk and Safety Assessments
,”
Risk-Based Decisionmaking in Water Resources IX
,
Santa Barbara, CA
,
Oct. 15–20, 2000
, pp.
173
188
.
23.
Berleant
,
D.
, and
Zhang
,
J.
,
2004
, “
Representation and Problem Solving With Distribution Envelope Determination (Denv)
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
153
168
.
24.
Hall
,
J. W.
, and
Lawry
,
J.
,
2004
, “
Generation, Combination and Extension of Random Set Approximations to Coherent Lower and Upper Probabilities
,”
Reliab. Eng. Syst. Saf.
,
85
(
1
), pp.
89
101
.
25.
Ferson
,
S.
,
2002
,
Ramas Risk Calc 4.0 Software: Risk Assessment With Uncertain Numbers
,
Lewis Publisher
,
New York
.
26.
Schöbi
,
R.
, and
Sudret
,
B.
,
2017
, “
Uncertainty Propagation of P-Boxes Using Sparse Polynomial Chaos Expansions
,”
J. Comput. Phys.
,
339
, pp.
307
327
.
27.
Zhang
,
H.
,
Mullen
,
R. L.
, and
Muhanna
,
R. L.
,
2012
, “
Structural Analysis With Probability-Boxes
,”
Int. J. Reliab. Saf.
,
6
(
1–3
), pp.
110
129
.
28.
Zhu
,
W.
,
Chen
,
N.
,
Liu
,
J.
, and
Beer
,
M.
,
2021
, “
A Probability-Box-Based Method for Propagation of Multiple Types of Epistemic Uncertainties and Its Application on Composite Structural-Acoustic System
,”
Mech. Syst. Signal Proc.
,
149
, p.
107184
.
29.
Wang
,
C.
,
Zhang
,
H.
, and
Beer
,
M.
,
2018
, “
Computing Tight Bounds of Structural Reliability Under Imprecise Probabilistic Information
,”
Comput. Struct.
,
208
, pp.
92
104
.
30.
Fisz
,
M.
,
1980
,
Probability Theory and Mathematical Statistics
,
John Wiley and Sons
,
New Jersey
.
31.
Mendenhall
,
W.
,
1971
,
Introduction to Probability and Statistics
,
Duxbury Press
,
Belmont
.
32.
Courant
,
R.
,
1968
,
Differential and Integral Calculus
,
Interscience Publishers
,
New York
.
33.
Murty
,
G. H.
,
1983
,
Linear Programming
,
John Wiley and Sons
,
New York
.
34.
Huang
,
B.
, and
Du
,
X.
,
2005
, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
26
33
.
35.
Liu
,
H. B.
,
Jiang
,
C.
,
Jia
,
X. Y.
,
Long
,
X. Y.
,
Zhang
,
Z.
, and
Guan
,
F. J.
,
2018
, “
A New Uncertainty Propagation Method for Problems With Parameterized Probability-Boxes
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
64
73
.
36.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
37.
Johnson
,
N. L.
,
1949
, “
Systems of Frequency Curves Generated by Methods of Translation
,”
Biometrika
,
36
(
1–2
), pp.
149
176
.
38.
Zaman
,
K.
,
Rangavajhala
,
S.
,
McDonald
,
M. P.
, and
Mahadevan
,
S.
,
2011
, “
A Probabilistic Approach for Representation of Interval Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
117
130
.
39.
Zaman
,
K.
,
McDonald
,
M.
, and
Mahadevan
,
S.
,
2011
, “
Probabilistic Framework for Uncertainty Propagation With Both Probabilistic and Interval Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021010
.
40.
Ma
,
L. L.
,
Yang
,
N.
, and
Zhao
,
G. F.
,
2008
, “
Structural Crashworthiness Analysis and Improvements of the Car
,”
Mach. Des. Manuf.
,
6
, pp.
106
108
.
41.
Zhang
,
W. G.
,
He
,
W.
, and
Zhong
,
Z. H.
,
2007
,
Techniques for Passenger Protection in Vehicle Crash
,
Hunan University Press
,
Changsha
.
42.
Jiang
,
C.
,
Zhang
,
Q. F.
,
Han
,
X.
, and
Qian
,
Y. H.
,
2014
, “
A Non-Probabilistic Structural Reliability Analysis Method Based on a Multidimensional Parallelepiped Convex Model
,”
Acta Mech.
,
225
(
2
), pp.
383
395
.
43.
Jiang
,
C.
,
Zhang
,
W.
,
Wang
,
B.
, and
Han
,
X.
,
2014
, “
Structural Reliability Analysis Using a Copula-Function-Based Evidence Theory Model
,”
Comput. Struct.
,
143
, pp.
19
31
.
You do not currently have access to this content.