Abstract

Metamodels instead of computer simulations are often adopted to reduce the computational cost in the uncertainty-based multilevel optimization. However, metamodel techniques may bring prediction discrepancy, which is defined as metamodeling uncertainty, due to the limited training data. An unreliable solution will be obtained when the metamodeling uncertainty is ignored, while an overly conservative solution, which contradicts the original intension of the design, may be got when both parametric and metamodeling uncertainty are treated concurrently. Hence, an adaptive sequential sampling framework is developed for the metamodeling uncertainty reduction of multilevel systems to obtain a solution that approximates the true solution. Based on the Kriging model for the probabilistic analytical target cascading (ATC), the proposed framework establishes a revised objective-oriented sampling criterion and sub-model selection criterion, which can realize the location of additional samples and the selection of subsystem requiring sequential samples. Within the sampling criterion, the metamodeling uncertainty is decomposed by the Karhunen–Loeve expansion into a set of stochastic variables, and then polynomial chaos expansion (PCE) is used for uncertainty quantification (UQ). The polynomial coefficients are encoded and integrated in the selection criterion to obtain subset sensitivity indices for the sub-model selection. The effectiveness of the developed framework for metamodeling uncertainty reduction is demonstrated on a mathematical example and an application.

References

1.
Joaquim
,
R. R. A. M.
, and
Andrew
,
B. L.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
2.
Liu
,
Z.
,
Zhu
,
C.
,
Zhu
,
P.
, and
Chen
,
W.
,
2018
, “
Reliability-Based Design Optimization of Composite Battery Box Based on Modified Particle Swarm Optimization Algorithm
,”
Compos. Struct.
,
204
, pp.
239
255
. 10.1016/j.compstruct.2018.07.053
3.
Tao
,
W.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Chen
,
W.
,
2017
, “
Multi-scale Design of Three Dimensional Woven Composite Automobile Fender Using Modified Particle Swarm Optimization Algorithm
,”
Compos. Struct.
,
181
, pp.
73
83
. 10.1016/j.compstruct.2017.08.065
4.
Zhu
,
C.
,
Zhu
,
P.
,
Liu
,
Z.
,
Tao
,
W.
, and
Chen
,
W.
,
2017
, “
Hierarchical Framework for Quantification Multiscale Structures of Two-Dimensional Woven Carbon Fibre-Reinforced Composites Considering Geometric Variability
,”
J. Ind. Text.
,
48
(
4
), pp.
802
824
. 10.1177/1528083717747333
5.
Amaral
,
S.
,
Allaire
,
D.
, and
Willcox
,
K.
,
2014
, “
A Decomposition-Based Approach to Uncertainty Analysis of Feed-Forward Multicomponent Systems
,”
Int. J. Numer. Methods Eng.
,
100
(
13
), pp.
982
1005
. 10.1002/nme.4779
6.
Amaral
,
S.
,
Allaire
,
D.
, and
Willcox
,
K.
,
2017
, “
A Decomposition-Based Uncertainty Quantification Approach for Environmental Impacts of Aviation Technology and Operation
,”
AI EDAM
,
31
(
3
), pp.
251
264
.
7.
Ramakrishnan
,
K.
,
Mastinu
,
G.
, and
Gobbi
,
M.
,
2019
, “
Multidisciplinary Design of Electric Vehicle Based on Hierarchical Multi-Objective Optimization
,”
ASME J. Mech. Des.
,
141
(
9
), pp.
091404
. 10.1115/1.4043840
8.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
. 10.1115/1.1582501
9.
Yao
,
W.
,
Chen
,
X. Q.
,
Luo
,
W. C.
,
Tooren
,
M. V.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
. 10.1016/j.paerosci.2011.05.001
10.
Zhang
,
D.
,
Peng
,
Z.
,
Ning
,
G.
, and
Han
,
X.
,
2020
, “
Positioning Accuracy Reliability of Industrial Robots Through Probability and Evidence Theories
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011704
. 10.1115/1.4047436
11.
Xu
,
C.
,
Liu
,
Z.
,
Tao
,
W.
, and
Zhu
,
P.
,
2020
, “
A Vine Copula-Based Hierarchical Framework for Multiscale Uncertainty Analysis
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031101
. 10.1115/1.4045177
12.
Liu
,
J.
,
Meng
,
X. H.
,
Xu
,
C.
,
Zhang
,
D. Q.
, and
Jiang
,
C.
,
2018
, “
Forward and Inverse Structural Uncertainty Propagations Under Stochastic Variables with Arbitrary Probability Distributions
,”
Comput. Methods Appl. Mech. Eng.
,
342
, pp.
287
320
. 10.1016/j.cma.2018.07.035
13.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
,
2006
, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
503
508
. 10.1115/1.2168470
14.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
,
2006
, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
991
1000
. 10.1115/1.2205870
15.
Xiong
,
F.
,
Yin
,
X.
,
Chen
,
W.
, and
Yang
,
S.
,
2010
, “
Enhanced Probabilistic Analytical Target Cascading With Application to Multi-Scale Design
,”
Eng. Optim.
,
42
(
6
), pp.
581
592
. 10.1080/03052150903386682
16.
Xiong
,
F.
,
Liu
,
Y.
, and
Yang
,
S.
,
2012
, “
A New Probabilistic Distribution Matching PATC Formulation Using Polynomial Chaos Expansion
,”
Eng. Optim.
,
44
(
7
), pp.
843
858
. 10.1080/0305215X.2011.617815
17.
Ouyang
,
Q.
,
Chen
,
X.
, and
Yao
,
W.
,
2014
, “
Sequential Probabilistic Analytical Target Cascading Method for Hierarchical Multilevel Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
,
49
(
2
), pp.
267
280
. 10.1007/s00158-013-0967-9
18.
Ouyang
,
Q.
,
Yao
,
W.
, and
Chen
,
X.
,
2018
, “
Mixed Uncertainty Based Analytical Target Cascading: An Approach for Hierarchical Multilevel Optimization Under Probabilistic and Interval Mixed Uncertainties
,”
Struct. Multidiscip. Optim.
,
57
(
4
), pp.
1475
1493
. 10.1007/s00158-017-1820-3
19.
Jung
,
Y.
,
Lee
,
J.
,
Lee
,
M.
,
Kang
,
N.
, and
Lee
,
I.
,
2020
, “
Probabilistic Analytical Target Cascading Using Kernel Density Estimation for Accurate Uncertainty Propagation
,”
Struct. Multidiscip. Optim.
,
61
(
5
), pp.
2077
2095
. 10.1007/s00158-019-02455-9
20.
Mehrez
,
L.
,
Fish
,
J.
,
Aitharaju
,
V.
,
Rodgers
,
W. R.
, and
Ghanem
,
R.
,
2018
, “
A PCE-Based Multiscale Framework for the Characterization of Uncertainties in Complex Systems
,”
Comput. Mech.
,
61
(
1–2
), pp.
219
236
. 10.1007/s00466-017-1502-4
21.
Wang
,
L.
,
Tao
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2021
, “
Data-Driven Topology Optimization With Multiclass Microstructures Using Latent Variable Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031708
. 10.1115/1.4048628
22.
Zadeh
,
P. M.
,
Toropov
,
V. V.
, and
Wood
,
A. S.
,
2009
, “
Metamodel-Based Collaborative Optimization Framework
,”
Struct. Multidiscip. Optim.
,
38
(
2
), pp.
103
115
. 10.1007/s00158-008-0286-8
23.
Zhang
,
S.
,
Zhu
,
P.
,
Chen
,
W.
, and
Arendt
,
P.
,
2013
, “
Concurrent Treatment of Parametric Uncertainty and Metamodeling Uncertainty in Robust Design
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
63
76
. 10.1007/s00158-012-0805-5
24.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B
,
63
(
3
), pp.
425
464
. 10.1111/1467-9868.00294
25.
Liu
,
Z.
,
Peng
,
Z.
,
Qiu
,
C.
,
Tan
,
J.
,
Duan
,
G.
, and
Cheng
,
J.
,
2017
, “
Simulation-Based Robust Design of Complex Product Considering Uncertainties of Metamodel, Design Variables, and Noise Parameters
,”
Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci.
,
231
(
20
), pp.
3715
3727
. 10.1177/0954406216654938
26.
Leotardi
,
C.
,
Serani
,
A.
,
Iemma
,
U.
,
Campana
,
E. F.
, and
Diez
,
M.
,
2016
, “
A Variable-Accuracy Metamodel-Based Architecture for Global MDO Under Uncertainty
,”
Struct. Multidiscip. Optim.
,
54
(
3
), pp.
573
593
. 10.1007/s00158-016-1423-4
27.
Qiu
,
N.
,
Gao
,
Y.
,
Fang
,
J.
,
Sun
,
G.
,
Li
,
Q.
, and
Kim
,
N. H.
,
2018
, “
Crashworthiness Optimization With Uncertainty From Surrogate Model and Numerical Error
,”
Thin-Walled Struct.
,
129
, pp.
457
472
. 10.1016/j.tws.2018.05.002
28.
Li
,
W.
,
Xiao
,
M.
,
Yi
,
Y.
, and
Gao
,
L.
,
2019
, “
Maximum Variation Analysis Based Analytical Target Cascading for Multidisciplinary Robust Design Optimization Under Interval Uncertainty
,”
Adv. Eng. Inform.
,
40
, pp.
81
92
. 10.1016/j.aei.2019.04.002
29.
Jung
,
Y.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
. 10.1115/1.4049883
30.
Jaeger
,
L.
,
Gogu
,
C.
,
Segonds
,
S.
, and
Bes
,
C.
,
2013
, “
Aircraft Multidisciplinary Design Optimization Under Both Model and Design Variables Uncertainty
,”
J. Aircr.
,
50
(
2
), pp.
528
538
. 10.2514/1.C031914
31.
Zhang
,
Y.
,
Li
,
M.
,
Zhang
,
J.
, and
Li
,
G.
,
2016
, “
Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111405
. 10.1115/1.4034222
32.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
. 10.1115/1.4041946
33.
Liu
,
Y.
,
Shi
,
Y.
,
Zhou
,
Q.
, and
Xiu
,
R.
,
2016
, “
A Sequential Sampling Strategy to Improve the Global Fidelity of Metamodels in Multi-Level System Design
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1295
1313
. 10.1007/s00158-015-1379-9
34.
Xu
,
C.
,
Liu
,
Z.
,
Zhu
,
P.
, and
Li
,
M.
,
2020
, “
Sensitivity Based Adaptive Sequential Sampling for Metamodel Uncertainty Reduction in Multilevel Systems
,”
Struct. Multidiscip. Optim.
,
62
(
3
), pp.
1473
1496
. 10.1007/s00158-020-02673-6
35.
Jiang
,
Z.
,
Chen
,
S.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2016
, “
Reduction of Epistemic Model Uncertainty in Simulation-Based Multidisciplinary Design
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081403
. 10.1115/1.4033918
36.
Bae
,
S.
,
Park
,
C.
, and
Kim
,
N. H.
,
2020
, “
Estimating Effect of Additional Sample on Uncertainty Reduction in Reliability Analysis Using Gaussian Process
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111706
. 10.1115/1.4047002
37.
Dubreuil
,
S.
,
Bartoli
,
N.
,
Gogu
,
C.
, and
Lefebvre
,
T.
,
2016
, “
Propagation of Modeling Uncertainty by Polynomial Chaos Expansion in Multidisciplinary Analysis
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111411
. 10.1115/1.4034110
38.
Wu
,
J.
,
Zhang
,
D.
,
Jiang
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2021
, “
On Reliability Analysis Method Through Rotational Sparse Grid Nodes
,”
Mech. Syst. Signal Proc.
,
147
(
15
), p.
107106
. 10.1016/j.ymssp.2020.107106
39.
Gratiet
,
L. L.
,
Marelli
,
S.
, and
Sudret
,
B.
,
2017
, “Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Process,”
Handbook of Uncertainty Quantification
,
R.
Ghanem
,
D.
Higdon
, and
H.
Owhadi
, eds.,
Springer International Publishing
,
Cham
, pp.
1289
1325
.
40.
Xu
,
C.
,
Zhu
,
P.
,
Liu
,
Z.
, and
Tao
,
W.
,
2021
, “
Mapping-Based Hierarchical Sensitivity Analysis for Multilevel Systems With Multidimensional Correlations
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011707
. 10.1115/1.4047689
41.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
. 10.1115/1.4023922
42.
Zhang
,
S.
,
Zhu
,
P.
,
Arendt
,
P. D.
, and
Chen
,
W.
,
2012
, “
Extended Objective-Oriented Sequential Sampling Method for Robust Design of Complex Systems Against Design Uncertainty
,”
ASME International Design Engineering Technical Conference & Computers & Information in Engineering Conference
,
Chicago, IL
,
Aug. 2012
, pp.
1237
1246
.
43.
Bagheri
,
S.
,
Konen
,
W.
,
Allmendinger
,
R.
,
Branke
,
J.
,
Deb
,
K.
,
Fieldsend
,
J.
,
Quagliarella
,
D.
, and
Sindhya
,
K.
,
2017
, “
Constraint Handling in Efficient Global Optimization
,”
Genetic and Evolutionary Computation Conference
,
Berlin, Germany
,
July
.
44.
Wang
,
H.
,
Hu
,
W.
, and
Li
,
E.
,
2020
, “
Handling of Constraints in Efficient Global Optimization
,”
Int. J. Comput. Methods
,
18
(
2
), p.
2050033
. 10.1142/S0219876220500334
45.
Parviz
,
M. Z.
,
Vassili
,
V. T.
, and
Alastair
,
S. W.
,
2006
, “
Collaborative Optimization Framework Based on the Interaction of Low- and High-Fidelity Models and the Moving Least Squares Method
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Newport, RI
,
May 2006
, pp.
1
14
.
You do not currently have access to this content.