Abstract

The most important property for accurate mechanical time bases is isochronism: the independence of period from oscillation amplitude. This paper develops a new concept in isochronism adjustment for flexure-based watch oscillators. Flexure pivot oscillators, which would advantageously replace the traditional balance wheel-spiral spring oscillator used in mechanical watches due to their significantly lower friction, exhibit nonlinear elastic properties that introduce an isochronism defect. Rather than minimizing this defect, we are interested in controlling it to compensate for external defects such as the one introduced by escapements. We show that this can be done by deriving a formula that expresses the change of frequency of the oscillator with amplitude, i.e., isochronism defect, caused by elastic nonlinearity. To adjust the isochronism, we present a new method that takes advantage of the second-order parasitic motion of flexures and embody it in a new architecture we call the co-RCC flexure pivot oscillator. In this realization, the isochronism defect of the oscillator is controlled by adjusting the stiffness of parallel flexures before fabrication through their length Lp, which has no effect on any other crucial property, including nominal frequency. We show that this method is also compatible with post-fabrication tuning by laser ablation. The advantage of our design is that isochronism tuning is an intrinsic part of the oscillator, whereas previous isochronism correctors were mechanisms added to the oscillator. The results of our previous research are also implemented in this mechanism to achieve gravity insensitivity, which is an essential property for mechanical watch time bases. We derive analytical models for the isochronism and gravity sensitivity of the oscillator and validate them by finite element simulation. We give an example of dimensioning this oscillator to reach typical practical watch specifications and show that we can tune the isochronism defect with a resolution of 1 s/day within an operating range of 10% of amplitude. We present a mock-up of the oscillator serving as a preliminary proof-of-concept.

References

1.
Académie des inscriptions et belles-lettres
,
1675
,
Le Journal Des Sçavans
,
Jean Cusson
,
Paris, France
.
2.
Bateman
,
D. A.
,
1977
, “
Vibration Theory and Clocks
,”
Horological J.
,
120–121
(
1
), pp.
3
8
.
3.
Matthys
,
R. J.
,
2004
,
Accurate Clock Pendulums
,
Oxford University Press
,
Oxford
.
4.
Vardi
,
I.
,
2014
, “
Le facteur de qualité en horlogerie mécanique
,”
Bulletin de la Société Suisse de Chronométrie
,
75
, pp.
9
.
5.
Eastman
,
F. S.
,
1935
,
Flexure Pivots to Replace Knife Edges and Ball Bearings, An Adaptation of Beam-Column Analysis
(
Engineering Experiment Station Series, University of Washington
),
Seattle
,
WA
.
6.
Noell
,
W.
,
Clerc
,
P.-A.
,
Jeanneret
,
S.
,
Hoogerwerf
,
A.
,
Niedermann
,
P.
,
Perret
,
A.
, and
de Rooij
,
N.
,
2004
, “
MEMS for a Watches
,”
Maastricht MEMS 2004 Technical Digest
,
IEEE
,
Maastricht, Netherlands
, p.
39904
.
7.
Musy
,
J.-P.
,
Maier
,
F.
, and
Krüttli
,
A.
,
2008
, “
Echappement et spiral réalisés en Silinvar®
,”
Journée d’Etude de la Société Suisse de Chronométrie, La Chaux-de-Fonds
, pp.
51
54
.
8.
Barrot
,
F.
,
Dubochet
,
O.
,
Henein
,
S.
,
Genequand
,
P.
,
Giriens
,
L.
,
Kjelberg
,
I.
,
Renevey
,
P.
,
Schwab
,
P.
, and
Ganny
,
F.
,
2014
, “
Un nouveau régulateur mécanique pour une réserve de marche exceptionnelle
,”
Actes de La Journée d’Etude de La Société Suisse de Chronométrie
, pp.
43
48
.
9.
Roulet
,
C.
,
2017
, “
Zenith’s Quantum Leap
,” journal.hautehorlogerie.org/en/zeniths-quantum-leap/
10.
Semon
,
G.
,
Ypma
,
W. J. B.
,
Weeke
,
S. L.
, and
Tolou
,
N.
,
2017
, “
Device for a Timepiece, Timepiece Movement and Timepiece Comprising a Device of Said Type
,” worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170921&DB=&locale=&CC=WO&NR=2017157870A1&KC=A1&ND=1
11.
von Gunten
,
S.
,
Gygax
,
P.
, and
Humair
,
L.
,
2015
, “
Oscillateur Mécanique
,” U.S. Patent EP2273323B1.
13.
Cosandier
,
F.
,
Henein
,
S.
,
Richard
,
M.
, and
Rubbert
,
L.
,
2017
,
The Art of Flexure Mechanism Design
,
EPFL Press
,
Lausanne, Switzerland
.
14.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
15.
Matthews
,
M. R.
,
1994
,
Science Teaching: The Role of History and Philosophy of Science
,
Routledge
,
New York
.
16.
Huygens
,
C.
, “
Horologium Oscillatorium [Latin with English translation by Ian Bruce]
,” www.17centurymaths.com/contents/huygenscontents.html
17.
Weeke
,
S. L.
,
Tolou
,
N.
,
Semon
,
G.
, and
Herder
,
J. L.
,
2016
, “
A Fully Compliant Force Balanced Oscillator
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 40th Mechanisms and Robotics Conference
,
Charlotte, NC
,
Aug. 21–24
,
American Society of Mechanical Engineers, p. V05AT07A008
.
18.
Kahrobaiyan
,
M. H.
,
Thalmann
,
E.
,
Rubbert
,
L.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Gravity-Insensitive Flexure Pivot Oscillators
,”
ASME J. Mech. Des.
,
140
(
7
), p.
075002
. 10.1115/1.4039887
19.
Conus
,
T.
,
2015
, “
Swatch Sistem51
”,
Journée d’Etude de La Société Suisse de Chronométrie 2015
, pp.
105
111
.
20.
Guillaume
,
C.-E.
,
1920
, “
Nobel Lecture: Invar and Elinvar
,” old.nobelprize.org/nobel_prizes/physics/laureates/1920/guillaume-lecture.html
21.
Ching
,
H.
, and
Ko
,
P. H.
,
2016
, “
Silicon Hairspring
,” U.S. Patent No. US20160238994A1.
22.
Vardi
,
I.
,
2015
, “
Mathematics, the Language of Watchmaking
,”
Watch Around
,
20
, pp.
90
94
.
23.
Bernoulli
,
J.
,
1697
, “Curvatura radii in diaphanis non uniformibus, Solutioque Problematis a se in Actis 1696, p. 269, propositi, de invenienda Linea Brachystochrona, id est, in qua grave a dato puncto ad datum punctum brevissimo tempore decurrit, & de curva Synchrona seu radiorum unda construenda,”
Acta Eruditorum
, Vol.
19
, Prostant apud
J.
Grossium
and
J. F.
Gleditschium
, eds., pp.
206
211
.
24.
Beckett
,
E.
, and
Grimthorpe
,
L.
,
1903
,
A Rudimentary Treatise on Clocks, Watches and Bells
, 8th ed.,
Crosby Lockwood and Son, D. Van Nostrand Company
,
London
.
25.
Rawlings
,
A. L.
,
1993
,
The Science of Clocks & Watches
, 3rd revised ed.,
British Horological Institute
,
Upton, UK
,
26.
Fedchenko
,
F. M.
,
1957
, “
Astronomical Clock AChF-1 With Isochronous Pendulum
,”
Sov. Astron.
,
1
, p.
637
.
27.
Huygens
,
C.
,
1893
,
Oeuvres Complètes
,
Publiées par la société hollandaise des sciences ed., Vol. VII. Martinus Nijhoff, La Haye
.
28.
Hastings
,
P.
,
1993
, “
A Look At the Grasshopper Escapement
,”
Horological J.
,
136
(
2
), pp.
48
53
.
29.
Wittrick
,
W.
,
1948
, “
The Theory of Symmetrical Crossed Flexure Pivots
,”
Aust. J. Sci. Res. A: Phys. Sci.
,
1
(
2
), p.
121
.
30.
Henein
,
S.
, and
Kjelberg
,
I.
,
2015
, “
Timepiece Oscillator
,” U.S. Patent No. US9207641.
31.
Wittrick
,
W.
,
1951
, “
The Properties of Crossed Flexure Pivots, and the Influence of the Point at Which the Strips Cross
,”
Aeronaut. Q.
,
2
(
4
), pp.
272
292
. 10.1017/S0001925900000470
32.
Henein
,
S.
, and
Schwab
,
P.
,
2014
,
Isochronism Corrector for Clockwork Escapement and Escapement Provided With Such a Corrector
,” U.S. Patent No. US8672536B2.
33.
Woodward
,
P.
,
1995
,
My Own Right Time: An Exploration of Clockwork Design
,
Oxford University Press
,
Oxford
.
34.
Di Domenico
,
G.
,
Hinaux
,
B.
,
Klinger
,
L.
, and
Helfer
,
J.-L.
,
2016
,
Timepiece Resonator With Crossed Blades
,” worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160623&DB=EPODOC&locale=en_EP&CC=WO&NR=2016096677A1&KC=A1&ND=4
35.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
. 10.1016/j.mechmachtheory.2010.05.004
36.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Yu
,
Z.
,
2008
, “
Analysis of Rotational Precision for An Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052302
. 10.1115/1.2885507
37.
Di Domenico
,
G.
,
Léchot
,
D.
,
Helfer
,
J.-L.
, and
Winkler
,
P.
,
2017
, “
Timepiece Resonator Mechanism
,” worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170816&DB=&locale=en_EP&CC=EP&NR=3206089A1&KC=A1&ND=4
38.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Stiffness and Stress Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
3
), pp.
378
391
. 10.1016/j.mechmachtheory.2009.10.001
39.
Haringx
,
J. A.
,
1949
, “
The Cross-Spring Pivot as a Constructional Element
,”
Flow, Turbul. Combust.
,
1
(
1
), p.
313
. 10.1007/BF02120338
40.
Grübler
,
M.
,
1917
,
Getriebelehre: Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen
,
Springer-Verlag
,
Berlin Heidelberg
.
41.
Thalmann
,
E.
,
Kahrobaiyan
,
M. H.
, and
Henein
,
S.
,
2018
, “
Flexure-Pivot Oscillator Restoring Torque Nonlinearity and Isochronism Defect
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 42nd Mechanisms and Robotics Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
,
New York
, p.
V05AT07A013
.
42.
Reymondin
,
C.-A.
,
Monnier
,
G.
,
Jeanneret
,
D.
, and
Pelaratti
,
U.
,
1999
,
The Theory of Horology
,
Swiss Federation of Technical Colleges
,
Le Locle, Switzerland
.
43.
Vardi
,
I.
,
Rubbert
,
L.
,
Bitterli
,
R.
,
Ferrier
,
N.
,
Kahrobaiyan
,
M.
,
Nussbaumer
,
B.
, and
Henein
,
S.
,
2018
, “
Theory and Design of Spherical Oscillator Mechanisms
,”
Precis. Eng.
,
51
, pp.
499
513
. 10.1016/j.precisioneng.2017.10.005
44.
ANSYS®
Academic Research Mechanical, Release 19.2, Help System, Theory Reference, ANSYS Inc
.
You do not currently have access to this content.