Abstract

This paper proposed a new tooth surface modeling method for beveloid gear based on the real cutter surface using two orthogonal variables. Then, the analytical mesh model with and without misalignments were derived and solved to study the influences of geometry design parameters on contact behaviors for paralleled beveloid gear pair. Loaded tooth contact analysis is used to validate the proposed mesh model by abaqus software, and the error is below 5%. Results suggest that the increase in pressure, cone, and helical angles enlarge the contact area for meshing without misalignments. The addendum coefficient has unsubstantial impacts on the contact behaviors. For meshing with axis error in the horizontal direction, the growth of pressure angle, cone angle, helical angle, and addendum coefficient improves the carrying capacity of single tooth. But the transmission error deteriorates with the increase in pressure, cone, and helical angles. All three types of misalignments have little influence on the size of the contact ellipse. The growth of axis errors in horizontal and vertical directions significantly increases the transmission error, but the center distance error has a little influence on the transmission precision.

References

1.
Logvinov
,
L. A.
,
1968
, “
Geometrical Design of Beveloid Gears Using Correction Factor Graphs
,”
Russ Eng J-Ussr
,
48
(
10
), pp.
18
28
.
2.
Liu
,
C. C.
, and
Tsay
,
C. B.
,
2001
, “
Tooth Undercutting of Beveloid Gears
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
569
576
. 10.1115/1.1414128
3.
Li
,
G
,
Wen Jianmin
M.
,
Zhang
,
X.
, and
Liu
,
Y.
,
2004
, “
Meshing Theory and Simulation of Noninvolute Beveloid Gears
,”
Mech. Mach. Theory
,
39
(
8
), pp.
883
892
. 10.1016/j.mechmachtheory.2004.02.005
4.
Song
,
C. S.
,
Zhu
,
C. C.
,
Lim
,
T. C.
, and
Fan
,
R.
,
2011
, “
Computational Tooth Root Stress Analysis of Crossed Beveloid Gears With Small Shaft Angle
,”
Appl. Mech. Mater.
,
86
, pp.
188
191
. 10.4028/www.scientific.net/AMM.86.188
5.
Zhu
,
C. C.
,
Song
,
C. S.
,
Lim
,
T. C.
, and
Peng
,
T.
,
2012
, “
Effects of Assembly Errors on Crossed Beveloid Gear Tooth Contact and Dynamic Response
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, pp.
379
387
, Paper No. DETC2011-47413.
6.
Song
,
C. S.
,
Zhu
,
C. C.
,
Liu
,
H. J.
, and
Ni
,
G. X.
,
2015
, “
Dynamic Analysis and Experimental Study of a Marine Gearbox With Crossed Beveloid Gears
,”
Mech. Mach. Theory
,
92
, pp.
17
28
. 10.1016/j.mechmachtheory.2015.05.001
7.
Ni
,
G. X.
,
Zhu
,
C. H.
,
Song
,
C. S.
,
Du
,
X. S.
, and
Zhou
,
Y.
,
2017
, “
Tooth Contact Analysis of Crossed Beveloid Gear Transmission With Parabolic Modification
,”
Mech. Mach. Theory
,
113
, pp.
40
52
. 10.1016/j.mechmachtheory.2017.03.004
8.
Artoni
,
A.
, and
Guiggiani
,
M.
,
2017
, “
Revisiting Generation and Meshing Properties of Beveloid Gears
,”
ASME J. Mech. Des.
,
139
(
9
), p.
093301
. 10.1115/1.4037345
9.
Zhou
,
Y.
,
Wu
,
Y.
,
Wang
,
L.
,
Tang
,
J.
, and
Ouyang
,
H.
,
2019
, “
A New Closed-Form Calculation of Envelope Surface for Modeling Face Gears
,”
Mech. Mach. Theory
,
137
, pp.
211
226
. 10.1016/j.mechmachtheory.2019.03.024
10.
Shao
,
W.
,
Ding
,
H.
,
Tang
,
J. Y.
, and
Peng
,
S. D.
,
2018
, “
A Data-Driven Optimization Model to Collaborative Manufacturing System Considering Geometric and Physical Performances for Hypoid Gear Product
,”
Rob. Comput. Integr. Manuf.
,
54
, pp.
1
16
. 10.1016/j.rcim.2018.05.004
11.
Mo
,
S.
,
Zhang
,
Y. D.
, and
Wu
,
Q.
,
2015
, “
Research on Multiple-Split Load Sharing of Two-Stage Star Gearing System in Consideration of Displacement Compatibility
,”
Mech. Mach. Theory
,
88
, pp.
1
15
. 10.1016/j.mechmachtheory.2015.01.005
12.
Liu
,
S.
,
Song
,
C.
,
Zhu
,
C.
,
Liang
,
C.
, and
Yang
,
X.
, “
Investigation on the Influence of Work Holding Equipment Errors on Contact Characteristics of Face-Hobbed Hypoid Gear
,”
Mech. Mach. Theory
,
138
, pp.
95
111
. 10.1016/j.mechmachtheory.2019.03.042
13.
Wang
,
S. R.
,
Zhan
,
D. G.
,
Liu
,
H.
, and
Wang
,
S. Y.
,
2002
, “
Tooth Contact Analysis of Toroidal Involute Worm Mating With Involute Helical Gear
,”
Mech. Mach. Theory
,
37
(
7
), pp.
685
691
. 10.1016/S0094-114X(02)00003-4
14.
Huang
,
C.
,
Kosasih
,
L.
, and
Huang
,
C. C.
,
2005
, “
The Tooth Contact Analysis of Round Pin Jointed Silent Chains
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sep. 24–28
, pp.
605
613
, Paper No. DETC2005-84065.
15.
Xiao
,
W. Q.
,
Li
,
W.
, and
Han
,
R. Y.
,
2007
, “
Tooth Contact Analysis of New-Style Unsymmetric Involute Gear With Double Pressure Angles
,”
Proceedings of the International Conference on Mechanical Engineering and Mechanics
,
Wuxi, China
,
Vol. 1
, pp.
533
537
.
16.
Wang
,
W. S.
, and
Fong
,
Z. H.
,
2010
, “
Tooth Contact Analysis of Longitudinal Cycloidal-Crowned Helical Gears With Circular Arc Teeth
,”
ASME J. Mech. Design
,
132
(
3
), p.
031008
.
17.
Xu
,
K.
,
Xu
,
A. J.
,
Yang
,
J. J.
,
Qiu
,
M.
, and
Su
,
J. X.
,
2014
, “
Tooth Contact Analysis of Planetary Gear Trains and Its Transmission Error Experiments and Frequency Spectrum Analysis
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Montreal, QC
,
Nov. 14–20
,
Vol. 13
, pp.
1
5
, Paper No. IMECE2014-37418.
You do not currently have access to this content.