This research proposes the self-similarity design concept of flexible mechanisms by studying the out-of-plane, piston motion of a compliant device. Self-similar compliant mechanisms can be formed by connecting flexible units of scaled-down, identical geometry in series and/or parallel. We study a folded-architecture, compact mechanism class formed of multiple flexible, circular, and concentric segments that are serially connected. The device is capable of producing large displacements by summing the small deformations of its units. A simple analytical model is derived, which predicts the mechanism piston compliance/stiffness in terms of configuration, geometry, and material parameters. Experimental testing of a prototype and finite element simulation of various designs confirm the validity of the mathematical model. Several particular designs resulting from the generic architecture are further characterized based on the analytical model to highlight the mechanism stiffness performance and the way it scales with its defining parameters and unit stiffness.

References

1.
Trylinski
,
V.
,
1971
,
Fine Mechanisms and Precision Instruments
,
Pergamon Press
,
Oxford
.
2.
Sydenham
,
P. H.
,
1984
, “
Elastic Design of Fine Mechanism in Instruments
,”
J. Phys. Sci. Instrum.
,
17
, pp.
922
930
.
3.
Vukobratovich
,
D.
,
Richard
,
R. M.
,
McNiven
,
J. P.
, and
Sinclair
,
L.
,
1995
, “
Slit Diaphragm Flexures for Optomechanics
,”
Proc. SPIE: Optomech. Precis. Instrum. Des.
,
2542
, pp.
2
10
.
4.
Duong
,
L.
, and
Kazerounian
,
K.
,
2007
, “
Design Improvement of the Mechanical Coupling Diaphragms for Aerospace Applications
,”
Mech. Based Des. Struct. Mach.
,
35
, pp.
467
479
.
5.
Yong
,
Y. K.
, and
Reza-Mohemani
,
S. O.
,
2010
, “
A z-Scanner Design for High-Speed Scanning Probe Microscopy
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Anchorage, AK
.
6.
Chen
,
S.
,
Golda
,
D.
,
Hermann
,
A.
, and
Slocum
,
A.
,
2004
, “
Design of an Ultra Precision Diaphragm Flexure Stage for Out-of-Plane Motion Guidance
,”
Proceedings of DETC'04 ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
.
7.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2005
, “
Design of Flexure Stages Based on Symmetric Diaphragm Flexure
,”
Proceedings of ASPE 2005 Annual Meeting
,
Norfolk, VA
, pp.
9
14
.
8.
Dong
,
S.
,
Guo
,
K.
,
Li
,
X.
,
Chen
,
H.
, and
Zhang
,
D.
,
2017
, “
Design and Analysis of Adjustment Mechanism With Slit Diaphragm Flexures for Optical Elements
,”
Chin. Opt.
,
10
(
6
), pp.
790
797
.
9.
Wood
,
C. T.
,
Horner
,
G. C.
, and
Clark
,
W. W.
,
1999
, “
Active Piezoceramic-Driven Flexure Actuator
,”
Proceedings of SPIE—The International Society for Optical Engineers, Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies
,
Newport Beach, CA
.
10.
Cox
,
B.
, and
Kaufman
,
M. I.
,
2011
, “
Design Considerations of a Slit Diaphragm Flexure Used in Precision Mirror Gimbal
,”
Proceedings of SPIE—The International Society for Optical Engineers, Optomechanics 2011: Innovations and Solutions
,
San Diego, CA
.
11.
Roopa
,
R.
,
Navin Karanath
,
P.
, and
Kulkarni
,
S. M.
,
2018
, “
Effect of Flexure Beam Geometry and Material on the Displacement of Piezo Actuated Diaphragm for Micropump
,”
IOP Conference Series: Materials Science and Engineering
,
Bengaluru, India
.
12.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
, pp.
788
798
.
13.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Robot.
,
2
,
011003
.
14.
Chen
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062303
.
15.
Waggoner
,
K.
, and
Lake
,
R.
,
2017
, “
Modeling of Segmented Controlled Electrostatically Actuated Bimorph Beams
,”
Proceedings of the 2017 IEEE National Aerospace and Electronics Conference (NAECON)
,
Dayton, OH
.
16.
Lobontiu
,
N.
,
2014
, “
Compliant-Based Modeling and Design of Straight-Axis/Circular-Axis Flexible Hinges With Small Out-of-Plane Deformations
,”
Mech. Mach. Theory
,
80
, pp.
166
183
.
17.
Spacek
,
M.
,
Brown
,
K. B.
,
Ma
,
Y.
,
Robinson
,
A. M.
,
Lawson
,
R. P. W.
, and
Allegretto
,
W.
,
1999
, “
CMOS Cantilever Microstructures as Thin Film Deposition Monitors
,”
Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering
,
Edmonton
, pp.
1648
1651
.
18.
Wu
,
X.
, and
Lee
,
D.-W.
,
2005
, “
Magnetic Coupling Between Folded Cantilevers for High-Efficiency Broadband Energy Harvesting
,”
Sens. Actuators A: Phys.
,
234
(
1
), pp.
17
22
.
19.
Zeyen
,
B.
,
Virwani
,
K.
,
Pittenger
,
B.
, and
Turner
,
K. L.
,
2009
, “
Preamplifying Cantilevers for Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
94
,
103507
.
20.
Mandelbrot
,
B. B.
,
1977
,
Fractals: Form, Chance, and Dimension
,
W.H. Freeman and Company
,
San Francisco, CA
.
21.
Boeing
,
G.
,
2016
, “
Visual Analysis of Nonlinear Dynamic Systems: Chaos, Fractals, Self-Similarity and the Limits of Predictions
,”
Systems
,
4
(
4
), 37; pp.
1
8
.
22.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (FACT)
,”
Precis. Eng.
,
35
, pp.
638
649
.
23.
Lobontiu
,
N.
,
2014
, “
Out-of-Plane (Diaphragm) Compliances of Circular-Axis Notch Flexible Hinges With Midpoint Radial Symmetry
,”
Mech. Based Des. Struct. Mach.
,
42
(
1
), pp.
517
537
.
You do not currently have access to this content.