An optimization approach is presented for generating linkage mechanisms consisting of frame members with arbitrarily inclined hinges. A second-order cone programming (SOCP) problem is solved to obtain the locations and directions of hinges of an infinitesimal mechanism. It is shown that the primal and dual SOCP problems correspond to the plastic limit analysis problems based on the lower-bound and upper-bound theorems, respectively, with quadratic yield functions. Constraints on displacement components are added to the dual problem, if a desirable deformation is not obtained. A finite mechanism is generated by carrying out geometrically nonlinear analysis and, if necessary, adding hinges and removing members. Effectiveness of the proposed method is demonstrated through examples of two- and three-dimensional mechanisms.

References

1.
Tsai
,
L. W.
,
2001
,
Mechanism Design: Enumeration of Kinematic Structures according to Function
,
CRC Press
,
Boca Raton, FL
.
2.
Gantes
,
C. J.
,
2001
,
Deployable Structures: Analysis and Design
,
WIT Press
, Southampton, UK.
3.
Pellegrino
,
S.
, ed.,
2001
,
Deployable Structures. CISM Courses and Lectures, No. 412
,
Springer-Verlag
,
Wien
, Austria.
4.
Mira
,
L. A.
,
Coelho
,
R. F.
,
Thrall
,
A. P.
, and
De Temmerman
,
N.
,
2015
, “
Parametric Evaluation of Deployable Scissor Arches
,”
Eng. Struct.
,
99
, pp.
479
491
.
5.
Akgün
,
Y.
,
Gantes
,
C. J.
,
Sobek
,
W.
,
Korkmaz
,
K.
, and
Kalochairetis
,
K.
,
2011
, “
A Novel Adaptive Spatial Scissor-Hinge Structural Mechanism for Convertible Roofs
,”
Eng. Struct.
,
33
(
4
), pp.
1365
1376
.
6.
Root
,
R. R.
, and
Ragsdell
,
K. M.
,
1976
, “
A Survey of Optimization Methods Applied to the Design of Mechanisms
,”
ASME J. Eng. Ind.
,
98
(
3
), pp.
1036
1041
.
7.
Stolpe
,
M.
, and
Kawamoto
,
A.
,
2005
, “
Design of Planar Articulated Mechanisms Using Branch and Bound
,”
Math. Program.
,
103
(
2
), pp.
357
397
.
8.
Liu
,
Y.
, and
McPhee
,
J.
,
2004
, “
Automated Type Synthesis of Planar Mechanisms Using Numeric Optimization With Genetic Algorithms
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
910
916
.
9.
Kim
,
Y. Y.
,
Jang
,
G.-W.
,
Park
,
J. H.
,
Hyun
,
J. S.
, and
Nam
,
S. J.
,
2007
, “
Automatic Synthesis of a Planar Linkage Mechanism With Revolute Joints by Using Spring-Connected Rigid Block Models
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
930
940
.
10.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
,
2009
, “
Generation of Link Mechanism by Shape-Topology Optimization of Trusses Considering Geometrical Nonlinearity
,”
JSME J. Comput. Sci. Technol.
,
3
(
1
), pp.
46
53
.
11.
Kang
,
S. W.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2016
, “
Topology Optimization of Planar Linkage Systems Involving General Joint Types
,”
Mech. Mach. Theory
,
104
, pp.
130
160
.
12.
Katoh
,
N.
, and
Tanigawa
,
S.
,
2009
, “
On the Infinitesimal Rigidity of Bar-and-Slider Frameworks
,”
Algorithms and Computation, Lecture Notes in Computer Science
,
Y.
Dong
,
D.-Z
,
Du
, and
O.
Ibarra
eds., Vol.
5878
,
Springer-Verlag
,
Berlin
, pp.
524
533
.
13.
Han
,
S. M.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2017
, “
Topology Optimization of Planar Linkage Mechanisms for Path Generation Without Prescribed Timing
,”
Struct. Multidiscip. Optim.
,
56
(
3
), pp.
501
517
.
14.
Kim
,
S. I.
,
Kang
,
S. W.
,
Yi
,
Y.-S.
,
Park
,
J.
, and
Kim
,
Y. Y.
,
2017
, “
Topology Optimization of Vehicle Rear Suspension Mechanisms
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1412
1433
.
15.
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2014
, “
Topology Optimization of Planar Linkage Mechanism
,”
Int. J. Numer. Methods Eng.
,
98
(
4
), pp.
265
286
.
16.
Ohsaki
,
M.
,
Kanno
,
Y.
, and
Tsuda
,
S.
,
2014
, “
Linear Programming Approach to Design of Spatial Link Mechanism With Partially Rigid Joints
,”
Struct. Multidiscip. Optim.
,
50
(
6
), pp.
945
956
.
17.
Tsuda
,
S.
,
Ohsaki
,
M.
,
Kikugawa
,
S.
, and
Kanno
,
Y.
,
2013
, “
Analysis of Stability and Mechanism of Frames With Partially Rigid Connections
,”
Trans. AIJ J. Struct. Construction Eng.
,
78
(
686
), pp.
791
798
.
18.
Ohsaki
,
M.
,
Tsuda
,
S.
, and
Miyazu
,
Y.
,
2016
, “
Design of Linkage Mechanisms of Partially Rigid Frames Using Limit Analysis With Quadratic Yield Functions
,”
Int. J. Solids Struct.
,
88–89
, pp.
68
78
.
19.
Anjos
,
M. F.
, and
Lasserre
,
J. B.
, eds.,
2012
,
Handbook on Semidefinite, Conic and Polynomial Optimization
,
Springer
,
New York
.
20.
Alizadeh
,
F.
, and
Goldfarb
,
D.
,
2003
, “
Second-Order Cone Programming
,”
Math. Program.
,
95
(
1
), pp.
3
51
.
21.
Bisbos
,
C. D.
,
Makrodimopoulos
,
A.
, and
Pardalos
,
P. M.
,
2005
, “
Second-Order Cone Programming Approaches to Static Shakedown Analysis in Steel Plasticity
,”
Optim. Methods Software
,
20
(
1
), pp.
25
52
.
22.
Makrodimopoulos
,
A.
, and
Martin
,
C. M.
,
2006
, “
Lower Bound Limit Analysis of Cohesive-Frictional Materials Using Second-Order Cone Programming
,”
Int. J. Numer. Methods Eng.
,
66
(
4
), pp.
604
634
.
23.
Krabbenhøft
,
K.
,
Lyamin
,
A. V.
, and
Sloan
,
S. W.
,
2007
, “
Formulation and Solution of Some Plasticity Problems as Conic Programs
,”
Int. J. Solids Struct.
,
44
(
5
), pp.
1533
1549
.
24.
Pastor
,
J.
,
Thoré
,
P.
, and
Pastor
,
F.
,
2010
, “
Limit Analysis and Numerical Modeling of Spherically Porous Solids With Coulomb and Drucker–Prager Matrices
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2162
2174
.
25.
Bleyer
,
J.
,
Maillard
,
M.
,
de Buhan
,
P.
, and
Coussot
,
P.
,
2015
, “
Efficient Numerical Computations of Yield Stress Fluid Flows Using Second-Order Cone Programming
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
599
614
.
26.
Yonekura
,
K.
, and
Kanno
,
Y.
,
2012
, “
Second-Order Cone Programming With Warm Start for Elastoplastic Analysis With Von Mises Yield Criterion
,”
Optim. Eng.
,
13
(
2
), pp.
181
218
.
27.
Kanno
,
Y.
, and
Ohsaki
,
M.
,
2005
, “
Minimum Principle of Complementary Energy for Nonlinear Elastic Cable Networks With Geometrical Nonlinearity
,”
J. Optim. Theory Appl.
,
126
(
3
), pp.
617
641
.
28.
Kanno
,
Y.
,
Ohsaki
,
M.
, and
Ito
,
J.
,
2002
, “
Large-Deformation and Friction Analysis of Nonlinear Elastic Cable Networks by Second-Order Cone Programming
,”
Int. J. Numer. Methods Eng.
,
55
(
9
), pp.
1079
1114
.
29.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2002
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM J. Optim.
,
12
(
4
), pp.
979
1006
.
30.
Dassault Systèmes,,
2014
, “
Dassault Systèmes: Abaqus User's Manual Ver. 6.14
,” Vélizy-Villacoublay, France.
You do not currently have access to this content.