Stochastic finite-element analysis of composite plates due to low velocity impact (LVI) is studied, considering the material properties (Young's modulii, Poisson's ratio, strengths, and fracture energy) and initial velocity as random parameters. Damage initiation and propagation failure due to matrix cracking are investigated for safety criteria for the LVI. Progressive damage mechanics is employed to predict the stochastic dynamic response of the plates. The Gaussian process response surface method (GPRSM) is presently adopted to determine the probability of failure (Pf). There is a possibility of underestimation of the peak contact force and displacement by 10.7% and 11.03%, respectively, if the scatter in the properties is not considered. The sensitivity-based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite for body armors.

References

1.
Abrate
,
S.
,
1998
, “
Impact on Laminated Composite Materials
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
155
1991
.
2.
Donadon
,
M. V.
,
Iannucci
,
L.
,
Falzon
,
B. G.
,
Hodgkinson
,
J. M.
, and
Almeida
,
S. F. M.
,
2008
, “
A Progressive Failure Model for Composite Laminates Subjected to Low Velocity Impact Damage
,”
Compos. Struct.
,
86
(
11–12
), pp.
1232
1252
.
3.
Bandaru
,
A. K.
,
Patel
,
S.
,
Sachan
,
Y.
,
Alagirusamy
,
R.
,
Bhatnagar
,
N.
, and
Ahmad
,
S.
,
2016
, “
Low Velocity Impact Response of 3D Angle-Interlock Kevlar/Basalt Reinforced Polypropylene Composites
,”
Mater. Des.
,
105
, pp.
323
332
.
4.
Hashin
,
Z.
,
1980
, “
Failure Criteria for Unidirectional Composites
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
329
334
.
5.
Sriramula
,
S.
, and
Chyssanthopoulos
,
M. K.
,
2009
, “
Quantification of Uncertainty in Stochastic Analysis of FRP Composites
,”
Composites Part A
,
40
(
11
), pp.
1673
1684
.
6.
Guedes Soares
,
C.
,
1997
, “
Reliability of Components in Composite Materials
,”
J. Reliab. Eng. Syst. Saf.
,
55
(
2
), pp.
171
177
.
7.
Jeong
,
H. K.
, and
Shenoi
,
R. A.
,
1998
, “
Reliability Analysis of Mid-Plane Symmetric Laminated Plates Using Direct Simulation Method
,”
Compos. Struct.
,
43
(
1
), pp.
1
13
.
8.
Rajashekhar
,
M. R.
, and
Ellingwood
,
B. R.
,
1993
, “
A New Look at the Response Surface Approach for Reliability Analysis
,”
Struct. Saf.
,
12
(
3
), pp.
205
220
.
9.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2012
, “
Efficient Global Surrogate Modeling for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
135
(
1
), p.
11009
.
10.
Patel
,
S. D.
,
Ahmad
,
S.
, and
Mahajan
,
P.
,
2014
, “
Reliability Analysis of a Composite Plate Under Low Velocity Impact Using the Gaussian Response Surface Method
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
15
(
3
), pp.
218
226
.
11.
Patel
,
S. D.
,
Ahmad
,
S.
, and
Mahajan
,
P.
,
2016
, “
Probabilistic Finite Element Analysis of S2-Glass Epoxy Composite Beams for Damage Initiation Due to High Velocity Impact
,”
ASME J. Risk Uncertainty Part B
,
2
(
4
), p.
044504
.
12.
Krishnamurthy
,
K. S.
,
Mahajan
,
P.
, and
Mittal
,
R. K.
,
2003
, “
Impact Response and Damage in Laminated Composite Cylindrical Shells
,”
Compos. Struct.
,
59
(
1
), pp.
15
36
.
13.
Kim
,
E. H.
,
Rim
,
M. S.
,
Lee
,
I.
, and
Hwang
,
T. K.
,
2013
, “
Composite Damage Model Based on Continuum Damage Mechanics and Low Velocity Impact Analysis of Composite Plates
,”
Compos. Struct.
,
95
, pp.
123
134
.
You do not currently have access to this content.