This work focuses on the design, development, and testing of an inexpensive, low-profile, cartwheel flexure mechanism for torque measurement. It has been designed primarily for use in a rehabilitation and diagnostics instrument for the treatment of ankle injuries. The sensor is manufactured rapidly and at low-cost using an Omax™ abrasive waterjet machine. Strain gauges are bonded to the flexure beams to measure applied strain using a full wheatstone bridge circuit. Displacement, force, and torque are then calculated from the measured circuit voltage; power and velocity can also be determined if required by the application. Experimental results show that there exists a linear relationship between applied torque and output voltage of the wheatstone bridge for the nested cartwheel flexure design. Furthermore, results of preliminary tests of an ankle rehabilitation device show that it fulfills a need not currently satisfied by current rehabilitation and diagnostic technology in physical medicine and rehabilitation.

References

1.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
(
27
), pp.
151
156
.
2.
Ma
,
R.
,
Slocum
,
A.
,
Sung
,
E.
,
Culpepper
,
M.
, and
Bean
,
J.
,
2010
, “
Ankle Rehabilitation via Compliant Mechanisms
,”
Design of Medical Devices Conference
, Apr. 13–15,
Minneapolis
.
3.
Smith
,
S.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
Newark, NJ
.
4.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton
.
5.
Dibiasio
,
C.
,
Culpepper
,
M.
,
Panas
,
R.
,
Howell
,
L.
, and
Magleby
,
S.
,
2008
, “
Comparison of Molecular Simulation and Pseudo-Rigid-Body Model Predictions for a Carbon Nanotube-Based Compliant Parallel-Guiding Mechanism
,”
J. Mech. Des.
,
130
(
4
), p.
042308
.10.1115/1.2885192
6.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
,
2009
, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Mach. Theory
,
44
, pp
1900
1909
.10.1016/j.mechmachtheory.2009.04.006
7.
Shushen
,
B.
,
Hongzhe
,
Z.
, and
Jingjun
,
Y.
,
2009
, “
Modeling of a Cartwheel Flexural Pivot
,”
J. Mech. Des.
,
131
, p.
061010
.10.1115/1.3125204
8.
Vischer
,
D.
, and
Khatib
,
O.
,
1995
, “
Design and Development of High-Performance, Torque-Controlled Joints
,”
Rob. Autom.
,
11
(
4
), pp.
537
544
.10.1109/70.406938
9.
Hirzinger
,
G.
,
Albu-Schaffer
,
A.
,
Hahnle
,
M.
,
Schaefer
,
I.
, and
Sporer
,
N.
,
2001
, “
New Generation of Torque Controlled Light-Weight Robots
,”
International Conference on Robotics and Automation
, pp.
3356
3363
.
10.
Ahili
,
F.
,
Buehler
,
M.
, and
Hollerbach
,
J.
,
2001
, “
Design of a Hollow Hexaform Torque Sensor for Robot Joints
,”
Int. J. Rob. Res.
,
20
(
12
), pp.
967
976
.10.1177/02783640122068227
11.
Young
,
W. C.
, and
Budynas
,
R. C.
,
2002
,
Roark's Formulas for Stress and Strain
, 7th ed.,
McGraw-Hill
,
New York
.
12.
Trease
,
B.
,
Moon
,
Y.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
J. Mech. Des.
,
127
(
4
), p.
788
.10.1115/1.1900149
13.
Diddens
,
D.
,
Reynaerts
,
D.
, and
Brussel
,
H.
,
1995
, “
Design of a Ring-Shaped Three-Axis Micro Force/Torque Sensor
,”
Sens. Actuators
,
46
, pp.
225
232
.10.1016/0924-4247(94)00895-O
14.
Sung
,
E.
,
Slocum
,
A. H.
, Jr.
,
Ma
,
R.
,
Bean
,
J. F.
, and
Culpepper
,
M. L.
,
2011
, “
Design of an Ankle Rehabilitation Device Using Compliant Mechanisms
,”
ASME J. Med. Devices
,
5
, p.
011001
.10.1115/1.4002901
You do not currently have access to this content.