A significant amount of research has been performed to explore the mathematical basis for dimensional and geometric tolerance representation, analysis, and synthesis. However, tolerancing semantics such as logical dependency among variations and sequence of specifications is not maintained in these models. Consequently, their numerical results are not interpretable. In this paper, a semantic tolerance modeling scheme based on generalized intervals is proposed to improve the interpretability of tolerance modeling. Under certain optimality conditions, semantic tolerance models allow for true variation range estimations with simple computations. With the theoretical support of semantic tolerance modeling, a new dimension and tolerance specification scheme for semantic tolerancing is also proposed to better capture design intents and manufacturing implications, including flexible material selection, rigidity of specifications and constraints, component sorting in selective assembly, and assembly sequences.

1.
Hong
,
Y. S.
, and
Chang
,
T.-C.
, 2002, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2425
2459
.
2.
Zhang
,
H. C.
, 1997,
Advanced Tolerancing Techniques
,
Wiley
,
New York
.
3.
Requicha
,
A. A. G.
, 1983, “
Toward a Theory of Geometric Tolerancing
,”
Int. J. Robot. Res.
0278-3649,
2
(
2
), pp.
45
60
.
4.
Roy
,
U.
, and
Li
,
B.
, 1999, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects—II Size, Orientation and Position Tolerances
,”
Comput.-Aided Des.
0010-4485,
31
(
4
), pp.
273
285
.
5.
Teck
,
T. B.
,
Senthil Kumar
,
A.
, and
Subramaian
,
V.
, 2001, “
A CAD Integrated Analysis of Flatness in a Form Tolerance Zone
,”
Comput.-Aided Des.
0010-4485,
33
(
11
), pp.
853
865
.
6.
Davidson
,
J. K.
,
Mujezinovic
,
A.
, and
Shah
,
J. J.
, 2002, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
609
622
.
7.
Mujezinovic
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2004, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
504
518
.
8.
Nigam
,
S. D.
, and
Turner
,
J. U.
, 1995, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput.-Aided Des.
0010-4485,
27
(
1
), pp.
6
15
.
9.
Chase
,
K. W.
, and
Greenwood
,
W. H.
, 1988, “
Design Issues in Mechanical Tolerance Analysis
,”
Manuf. Rev.
0896-1611,
1
(
1
), pp.
50
59
.
10.
Srinivasan
,
V.
, and
O’Connor
,
M. A.
, 1994, “
On Interpreting Statistical Tolerancing
,”
Manuf. Rev.
0896-1611,
7
(
4
), pp.
304
311
.
11.
Zhang
,
C.
,
Luo
,
J.
, and
Wang
,
B.
, 1999, “
Statistical Tolerance Synthesis Using Distribution Function Zones
,”
Int. J. Prod. Res.
0020-7543,
37
(
17
), pp.
3995
4006
.
12.
Wirtz
,
A.
,
Gachter
,
C.
, and
Wipf
,
D.
, 1993, “
From Unambiguously Defined Geometry to the Perfect Quality Control Loop
,”
CIRP Ann.
0007-8506,
42
(
1
), pp.
615
618
.
13.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
, 1994, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
0934-9839,
6
, pp.
191
210
.
14.
Desrochers
,
A.
, and
Riviere
,
A.
, 1997, “
A Matrix Approach to the Representation of Tolerance Zones and Clearances
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
, pp.
630
636
.
15.
Rivest
,
L.
,
Fortin
,
C.
, and
Morel
,
C.
, 1994, “
Tolerancing a Solid Model With a Kinematic Formulation
,”
Comput.-Aided Des.
0010-4485,
26
(
6
), pp.
465
476
.
16.
Chase
,
K. W.
,
Magleby
,
S. P.
,
Gao
,
J.
, and
Sorensen
,
C. D.
, 1996, “
Including Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies
,”
IIE Trans.
0740-817X,
28
(
10
), pp.
795
807
.
17.
Sacks
,
E.
, and
Joskowicz
,
L.
, 1998, “
Parametric Kinematic Tolerance Analysis of General Planar Systems
,”
Comput.-Aided Des.
0010-4485,
30
(
9
), pp.
707
714
.
18.
Turner
,
J. U.
, and
Wozny
,
M. J.
, 1987, “
Tolerances in Computer-Aided Geometric Design
,”
Visual Comput.
0178-2789,
3
, pp.
214
226
.
19.
Ashiagbor
,
A.
,
Liu
,
H. C.
, and
Nnaji
,
B. O.
, 1998, “
Tolerance Control and Propagation for the Product Assembly Modeler
,”
Int. J. Prod. Res.
0020-7543,
36
(
1
), pp.
75
94
.
20.
Liu
,
S.
, and
Hu
,
S.
, 1997, “
Variation Simulation for Compliant Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
(
3
), pp.
368
374
.
21.
Liu
,
S. C.
,
Hu
,
S. J.
, and
Woo
,
T. C.
, 1996, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
1050-0472,
118
(
1
), pp.
62
67
.
22.
Merkley
,
K. G.
, 1998, “
Tolerance Analysis of Compliant Assemblies
,” Ph.D. thesis, Brigham Young University, Provo, UT.
23.
Camelio
,
J.
,
Hu
,
S. J.
, and
Marin
,
S. P.
, 2004, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
355
360
.
24.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
673
681
.
25.
Ding
,
Y.
,
Jin
,
J.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2005, “
Process-Oriented Tolerancing for Multi-station Assembly Systems
,”
IIE Trans.
0740-817X,
37
(
6
), pp.
493
508
.
26.
Moore
,
R. E.
, 1966,
Interval Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
Mudur
,
S. P.
, and
Koparkar
,
P. A.
, 1984, “
Interval Methods for Processing Geometric Objects
,”
IEEE Comput. Graphics Appl.
0272-1716,
4
(
2
), pp.
7
17
.
28.
Duff
,
T.
, 1992, “
Interval Arithmetic and Recursive Subdivision for Implicit Functions and Constructive Solid Geometry
,”
Comput. Graphics
0097-8493,
26
(
2
), pp.
131
138
.
29.
Snyder
,
J.
, 1999,
Generative Modeling for Computer Graphics and CAD: Symbolic Shape Design Using Interval Analysis
,
Academic
,
Cambridge
.
30.
Sederberg
,
T. W.
, and
Farouki
,
R. T.
, 1992, “
Approximation by Interval Bezier Curves
,”
IEEE Comput. Graphics Appl.
0272-1716,
12
(
5
), pp.
87
95
.
31.
Abrams
,
S. L.
,
Cho
,
W.
,
Hu
,
C. Y.
,
Maekawa
,
T.
,
Patrikalakis
,
N. M.
,
Sherbrooke
,
E. C.
, and
Ye
,
X.
, 1998, “
Efficient and Reliable Methods for Rounded-Interval Arithmetic
,”
Comput.-Aided Des.
0010-4485,
30
(
8
), pp.
657
665
.
32.
Tuohy
,
S. T.
,
Maekawa
,
T.
,
Shen
,
G.
, and
Patrikalakis
,
N. M.
, 1997, “
Approximation of Measured Data With Interval B-Splines
,”
Comput.-Aided Des.
0010-4485,
29
(
11
), pp.
791
799
.
33.
Wallner
,
J.
,
Krasauskas
,
R.
, and
Pottmann
,
H.
, 2000, “
Error Propagation in Geometric Constructions
,”
Comput.-Aided Des.
0010-4485,
32
(
11
), pp.
631
641
.
34.
Finch
,
W. W.
, and
Ward
,
A. C.
, 1997, “
A Set-Based System for Eliminating Infeasible Designs in Engineering Problems Dominated by Uncertainty
,”
Proceedings of the 1997 ASME Design Engineering Technical Conference
, Paper No. DETC97∕DTM-3886.
35.
Rao
,
S. S.
, and
Berke
,
L.
, 1997, “
Analysis of Uncertain Structural Systems Using Interval Analysis
,”
AIAA J.
0001-1452,
35
(
4
), pp.
727
735
.
36.
Rao
,
S. S.
, and
Cao
,
L.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
465
472
.
37.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
, 1999, “
Formulation of Fuzzy Finite-Element Methods for Solid Mechanics Problems
,”
Comput. Aided Civ. Infrastruct. Eng.
1093-9687,
14
(
2
), pp.
107
117
.
38.
Muhanna
,
R. L.
,
Zhang
,
H.
, and
Mullen
,
R. L.
, 2007, “
Interval Finite Element as a Basis for Generalized Models of Uncertainty in Engineering Mechanics
,”
Reliable Computing
,
13
(
2
), pp.
173
194
.
39.
Joan-Arinyo
,
R.
,
Mata
,
N.
, and
Soto-Riera
,
A.
, 2001, “
A Constraint Solving-based Approach to Analyze 2D Geometric Problems With Interval Parameters
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
4
), pp.
341
346
.
40.
Wang
,
Y.
, and
Nnaji
,
B. O.
, 2007, “
Solving Interval Constraints by Linearization in Computer-Aided Design
,”
Reliable Computing
,
13
(
2
), pp.
211
244
.
41.
Yang
,
C. C.
,
Marefat
,
M. M.
, and
Ciarallo
,
F. W.
, 2000, “
Interval Constraint Networks for Tolerance Analysis and Synthesis
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
14
(
4
), pp.
271
287
.
42.
Wu
,
W.
, and
Rao
,
S. S.
, 2004, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
581
592
.
43.
Gardenes
,
E.
,
Sainz
,
M. A.
,
Jorba
,
L.
,
Calm
,
R.
,
Estela
,
R.
,
Mielgo
,
H.
, and
Trepat
,
A.
, 2001, “
Modal Intervals
,”
Reliable Computing
,
7
(
2
), pp.
77
111
.
44.
Markov
,
S.
, 2001, “
On the Algebraic Properties of Intervals and Some Applications
,”
Reliable Computing
,
7
(
2
), pp.
113
127
.
45.
Shary
,
S. P.
, 2002, “
A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity
,”
Reliable Computing
,
8
(
2
), pp.
321
418
.
46.
Popova
,
E. D.
, 2001, “
Multiplication Distributivity of Proper and Improper Intervals
,”
Reliable Computing
,
7
(
2
), pp.
129
140
.
47.
Armengol
,
J.
,
Vehi
,
J.
,
Trave-Massuyes
,
L.
, and
Sainz
,
M. A.
, 2001, “
Application of Modal Intervals to the Generation of Error-Bounded Envelopes
,”
Reliable Computing
,
7
(
2
), pp.
171
185
.
48.
Kaucher
,
E.
, 1980, “
Interval Analysis in the Extended Interval Space IR
,”
Computing Supplementa
,
2
, pp.
33
49
.
49.
Hopp
,
T. H.
, 1993, “
The Language of Tolerances
,” in
Quality Through Engineering Design
,
W.
Kuo
, ed.,
Elsevier
,
Amsterdam
, pp.
317
332
.
50.
Chase
,
K. W.
,
Magleby
,
S. P.
, and
Gao
,
J.
, 1997, “
Tolerance Analysis of Two- and Three-Dimensional Mechanical Assemblies With Small Kinematic Adjustments
,” in
Advanced Tolerancing Techniques
,
H. C.
Zhang
, ed.,
Wiley
,
New York
, pp.
103
137
.
You do not currently have access to this content.