We report on the accuracy of the pseudo-rigid-body model (PRBM) in predicting the behavior of a nanoscale parallel-guiding mechanism (nPGM) that uses two single-walled (5,5) carbon nanotubes (CNTs) as the flexural guiding elements. The nPGM has two regions of behavior: region 1 is governed by the bulk deformation of the nanotubes, and region 2 is characterized by hingelike flexing of four “kinks” that occur due to buckling of the nanotube walls. PRBM parameters for (5,5) CNTs are proposed. Molecular simulation results of region 1 behavior match PRBM predictions of (1) kinematic behavior with less than 7.3% error and (2) elastomechanic behavior with less than 5.7% error. Although region 1 is of more interest because of its well-defined and stable nature, region 2 motion is also investigated. We show that the PRBM parameters are dependent on the selection of the effective tube thickness and moment of inertia, the lesson being that designers must take care to consider the thickness and moment of inertia values when deriving PRBM constants.

1.
Browne
,
W. R.
, and
Feringa
,
B. L.
, 2006, “
Making Molecular Machines Work
,”
Nat. Nanotechnol.
1748-3387,
1
, pp.
25
35
.
2.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
3.
Derderian
,
J. M.
,
Howell
,
L. L.
,
Murphy
,
M. D.
,
Lyon
,
S. M.
, and
Pack
,
S. D.
, 1996, “
Compliant Parallel-Guiding Mechanisms
,”
Proceedings of the 1996 ASME Mechanisms Conference
, Paper No. 96-DETC∕MECH-1208.
4.
MEMS electrostatic actuator reference
:
Tang
,
W. C.
,
Nguyen
,
T.-C. H.
, and
Howe
,
R. T.
, 1989, “
Laterally Driven Polysilicon Resonant Microstructures
,”
Sens. Actuators
0250-6874,
20
, pp.
25
32
.
5.
Jones
,
R. V.
, 1988,
Instruments and Experiences
,
Wiley
,
New York
.
6.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach
,
New York
.
7.
Atwar
,
S.
, and
Slocum
,
A. H.
, 2005, “
Design of Parallel Kinematic XY Flexure Mechanisms
,”
Proceedings of the 2005 ASME Design Engineering Technical Conference
,
Long Beach, CA
.
8.
Lu
,
J.
, and
Zhang
,
L.
, 2006, “
Analysis of Localized Failure of Single-Wall Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
35
, pp.
432
441
.
9.
Culpepper
,
M. L.
,
DiBiasio
,
C. M.
,
Panas
,
R. M.
,
Magleby
,
S.
, and
Howell
,
L. L.
, 2006, “
Simulation of a Carbon-Nanotube-Based Compliant Parallel-Guiding Mechanism: A Nanomechanical Building Block
,”
Appl. Phys. Lett.
0003-6951,
89
(
20
), p.
203111
.
10.
Bourlon
,
B.
,
Flattli
,
D. C.
,
Milo
,
C.
,
Forro
,
L.
, and
Bachtold
,
A.
, 2004, “
Carbon Nanotube Based Bearing for Rotational Motions
,”
Nano Lett.
1530-6984,
4
(
4
), pp.
709
712
.
11.
Zhang
,
S. L.
,
Liu
,
W. K.
, and
Ruoff
,
R.
, 2004, “
Atomistic Simulations of Double-Walled Carbon Nanotubes (DWCNTs) as Rotational Bearings
,”
Nano Lett.
1530-6984,
4
(
2
), pp.
293
297
.
12.
Fennimore
,
A. M.
,
Yuzvinksly
,
T. D.
,
Han
,
W.
,
Fuhrer
,
M. S.
,
Cumings
,
J.
, and
Zettle
,
A.
, 2003, “
Rotational Actuators Based on Carbon Nanotubes
,”
Nature (London)
0028-0836,
424
, pp.
408
410
.
13.
Lee
,
J.
, and
Kim
,
S.
, 2005, “
Manufacture of a Nanotweezer Using a Length Controlled CNT Arm
,”
Sens. Actuators, A
0924-4247,
120
(
1
), pp.
193
198
.
14.
Akita
,
S.
, and
Nakayama
,
Y.
, 2002, “
Manipulation of Nanomaterial by Carbon Nanotube Nanotweezers in Scanning Probe Microscope
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
41
, pp.
4242
4245
.
15.
Jang
,
J. E.
,
Cha
,
S. N.
,
Choi
,
Y.
,
Amaratunga
,
A. J.
,
Kang
,
D. J.
,
Hasko
,
D. G.
,
Kim
,
J. M.
, and
Jung
,
J. E.
, 2005, “
Nanoelectromechanical Switches With Vertically Aligned Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
87
(
16
), p.
163114
.
16.
Meyer
,
J. C.
,
Paillet
,
M.
, and
Roth
,
S.
, 2005, “
Single-Molecule Torsional Pendulum
,”
Science
0036-8075,
309
, pp.
1539
1541
.
17.
Papadakis
,
S. J.
,
Hall
,
A. R.
,
Williams
,
P. A.
,
Vicci
,
L.
,
Falvo
,
M. R.
,
Superfine
,
R.
, and
Washburn
,
S.
, 2004, “
Resonant Oscillators With Carbon Nanotube Torsion Springs
,”
Phys. Rev. Lett.
0031-9007,
93
(
14
), p.
146101
.
18.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-Friction Nano-Scale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
0036-8075,
289
, pp.
602
604
.
19.
Yu
,
M.
,
Yakobson
,
B. I.
, and
Ruoff
,
R. S.
, 2000, “
Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes
,”
J. Phys. Chem. B
1089-5647,
104
, pp.
8764
8767
.
20.
Saito
,
R.
,
Matsuo
,
R.
,
Kimura
,
T.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 2001, “
Anomalous Potential Barrier of Double-Wall Carbon Nanotube
,”
Chem. Phys. Lett.
0009-2614,
348
, pp.
187
193
.
21.
Lozovik
,
Y. E.
,
,
Monogin
,
A. V.
, and
Popov
,
A. M.
, 2003, “
Nanomachines Based on Carbon Nanotubes
,”
Phys. Lett. A
0375-9601,
313
, pp.
112
121
.
22.
Belikov
,
A. V.
,
Lozovika
,
Yu. E.
,
Nikolaev
,
A. G.
, and
Popov
,
A. M.
, 2004, “
Double-Wall Nanotubes: Classification and Barriers to Walls Relative Rotation, Sliding and Screw-Like Motion
,”
Chem. Phys. Lett.
0009-2614,
385
, pp.
72
78
.
23.
Chen
,
X.
, and
Cao
,
G.
, 2006, “
A Structural Mechanics Study of Single-Walled Carbon Nanotubes Generalized From Atomistic Simulation
,”
Nanotechnology
0957-4484,
17
, pp.
1004
1015
.
24.
Harik
,
V. M.
,
, 2001, “
Ranges of Applicability for the Continuum Beam Model in the Mechanics of Carbon Nanotubes and Nanorods
,”
Solid State Commun.
0038-1098,
120
, pp.
331
335
.
25.
Harik
,
V. M.
, 2002, “
Mechanics of Carbon Nanotubes, Applicability of the Continuum Beam Models
,”
Comput. Mater. Sci.
0927-0256,
24
, pp.
328
342
.
26.
Wang
,
C. Y.
,
Fu
,
C. Q.
, and
Mioduchowski
,
A.
, 2004, “
Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
622
631
.
27.
Khurram Wadee
,
M.
,
Ahmer Wadee
,
M.
,
Bassom
,
A. P.
, and
Aigner
,
A. A.
, 2006, “
Longitudinally Inhomogeneous Deformation Patterns in Isotropic Tubes Under Pure Bending
,”
Proc. R. Soc. London, Ser. A
1364-5021,
462
(
2067
), pp.
817
838
.
28.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
Proceedings of the 1994 ASME Winter Annual Meeting
, Nov.
Chicago, IL
, pp.
677
686
.
29.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multicriteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
238
245
.
30.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
495
526
.
31.
Maxwell
,
J. C.
,
, 1890, “
General Considerations Concerning Scientific Apparatus
,”
The Scientific Papers of James Clerk Maxwell
,
Dover
,
New York
.
32.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME
,
New York
.
33.
Hale
,
L. C.
, 1999, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, MIT.
34.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, “
Synthesis of Multi-Degree of Freedom Flexure System Concepts Via Freedom and Constraint Topologies (FACT)—Part I: Principles
,”
Precis. Eng.
0141-6359, submitted.
35.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams Incompliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
117
(
1
), pp.
156
165
.
36.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
37.
Salvetat
,
J. P.
,
Kulik
,
A. J.
,
Bonard
,
J. M.
,
Briggs
,
G. A. D.
,
Stockli
,
T.
,
Metenier
,
K.
,
Bonnamy
,
S.
,
Beguin
,
F.
,
Burnham
,
N. A.
, and
Forro
,
L.
, 1999, “
Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
11
(
2
), pp.
161
165
.
38.
Salvetat
,
J. P.
,
Briggs
,
G. A. D.
,
Bonard
,
J. M.
,
Bacsa
,
R. R.
,
Kulik
,
A. J.
,
Stockli
,
T.
,
Burnham
,
N. A.
, and
Forro
,
L.
, 1999,
Phys. Rev. Lett.
0031-9007,
82
(
5
), pp.
944
947
.
39.
Kudin
,
K.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
, 2001, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
0163-1829,
64
, p.
235406
.
40.
Sanchez-Portal
,
D.
,
Artacho
,
E.
,
Soler
,
J. M.
,
Rubio
,
A.
, and
Ordejon
,
P.
, 1999, “
Ab Initio Structural, Elastic, and Vibrational Properties of Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
59
, pp.
12678
12688
.
41.
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
, and
Culpepper
,
M. L.
, 2007, “
Difference Between Bending and Stretching Moduli of Single-Walled Carbon Nanotubes That are Modeled as an Elastic Tube
,”
Appl. Phys. Lett.
0003-6951,
90
(
20
), p.
203116
.
42.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
, 2006, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
74
, p.
245413
.
43.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
, 1996, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
, pp.
2089
2092
.
44.
Sears
,
A.
, and
Batra
,
R. C.
, 2004, “
Macroscopic Properties of Carbon Nanotubes From Molecular Mechanic Simulations
,”
Phys. Rev. B
0163-1829,
69
, p.
235406
.
You do not currently have access to this content.