This paper presents a study on the higher-order motion of point-lines embedded on rigid bodies. The mathematic treatment of the paper is based on dual quaternion algebra and differential geometry of line trajectories, which facilitate a concise and unified description of the material in this paper. Due to the unified treatment, the results are directly applicable to line motion as well. The transformation of a point-line between positions is expressed as a unit dual quaternion referred to as the point-line displacement operator depicting a pure translation along the point-line followed by a screw displacement about their common normal. The derivatives of the point-line displacement operator characterize the point-line motion to various orders with a set of characteristic numbers. A set of associated rigid body motions is obtained by applying an instantaneous rotation about the point-line. It shows that the ISA trihedrons of the associated rigid motions can be simply depicted with a set of $∞2$ cylindroids. It also presents for a rigid body motion, the locus of lines and point-lines with common rotation or translation characteristics about the line axes. Lines embedded in a rigid body with uniform screw motion are presented. For a general rigid body motion, one may find lines generating up to the third order uniform screw motion about these lines.

1.
Tsai
,
L. W.
, and
Roth
,
B.
, 1973, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
95
(
3
), pp.
725
736
.
2.
Bottema
,
O.
, 1973, “
On a Set of Displacements in Space
,”
ASME J. Eng. Ind.
0022-0817,
95
(
2
), pp.
451
454
.
3.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
, Chap. 26.
4.
Sticher
,
F.
, 1989, “
On The Finite Screw Axis Cylindroid
,”
Mech. Mach. Theory
0094-114X,
24
(
3
), pp.
143
155
.
5.
Parkin
,
I. A.
, 1992, “
A Third Conformation With The Screw Systems: Finite Twist Displacements of a Directed Line and Point
,”
Mech. Mach. Theory
0094-114X,
27
(
2
), pp.
177
188
.
6.
Huang
,
C.
, and
Roth
,
B.
, 1994, “
Analytic Expressions for the Finite Screw Systems
,”
Mech. Mach. Theory
0094-114X,
29
(
2
), pp.
207
222
.
7.
Hunt
,
K. H.
, and
Parkin
,
I. A.
, 1995, “
Finite Displacements of Points, Planes, and Lines Via Screw Theory
,”
Mech. Mach. Theory
0094-114X,
30
(
2
), pp.
177
192
.
8.
Zhang
,
Y.
, and
Ting
,
K. L.
, 2004, “
On the Basis Screws and Screw Systems of Point-Line and Line Displacements
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
56
62
.
9.
Plücker
,
J.
, 1865, “
On a New Geometry of Space
,”
Philos. Trans. R. Soc. London
0370-2316,
155
, pp.
725
791
.
10.
Study
,
E.
, 1891, “
Von Bewegungen und Umlegungen
,”
Math. Ann.
0025-5831,
39
, pp.
441
564
.
11.
Kotel’nikov
,
A. P.
, 1895, Vintovoe Schislenie i Nikotoriya Prilozheniya evo k Geometrie i Mechaniki, Kazan (in Russian).
12.
Clifford
,
W. K.
, 1876, “
On the Classification of Geometric Algebras
,”
Mathematical Papers
,
R.
Tucker
, ed.,
MacMillan
,
London
, pp.
397
401
.
13.
Dimentberg
,
F. M.
, 1965,
The Screw Calculus and Its Applications in Mechanics
, (in Russian), Moscow. (English translation: AD680993,
Clearinghouse for Federal Technical and Scientific Information, VA
).
14.
Yang
,
A. T.
, 1963, “
Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms
,” Ph.D. dissertation, Columbia University, New York.
15.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford, UK
.
16.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
New York
.
17.
Kirson
,
Y.
, 1975, “
Higher Order Curvature Theory in Space Kinematics
,” Ph. D. dissertation, University of California at Berkeley, Berkeley, CA.
18.
Kirson
,
Y.
, and
Yang
,
A. T.
, 1978, “
Instantaneous Invariants in Three-Dimensional Kinematics
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
409
414
.
19.
Veldkamp
,
G. R.
, 1976, “
On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics
,”
MMT
,
11
(
2
), pp.
141
156
.
20.
McCarthy
,
J. M.
, and
Roth
,
B.
, 1981, “
The Curvature Theory of Line Trajectories in Spatial Kinematics
,”
ASME J. Mech. Des.
1050-0472,
103
, pp.
718
724
.
21.
McCarthy
,
J. M.
, 1987, “
On the Scalar and Dual Formulations of the Curvature Theory of Line Trajectories
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
101
106
.
22.
Schaaf
,
J. A.
, and
Ravani
,
B.
, 1998, “
Geometric Continuity of Ruled Surfaces
,”
Comput. Aided Geom. Des.
0167-8396,
15
(
3
), pp.
289
310
.
23.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT Press
,
Cambridge, MA
.
24.
McCarthy
,
J. M.
, 2000,
,
Springer
,
Berlin
.
25.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2004, “
Dual Quaternion Synthesis of Constrained Robotic Systems
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
425
435
.
26.
Ting
,
K. L.
, and
Zhang
,
Y.
, 2004, “
Rigid Body Motion Characteristics and Unified Instantaneous Motion Representation of Points, Lines, and Planes
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
593
601
.
27.
Veldkamp
,
G. R.
, 1967, “
Canonical Systems and Instantaneous Invariants in Spatial Kinematics
,”
J. Mech.
0022-2569,
2
, pp.
329
388
.
28.
Ablamowicz
,
R.
, 1996, “
Clifford Algebra Computations With Maple
,” in
Clifford (Geometric) Algebra with Applications in Physics, Mathematics, and Engineering
W. E.
Baylis
, ed.,
Birkhäuser
,
Boston
, pp.
463
501
.