Based on the Lie-group-algebraic properties of the displacement set, the three-degree-of-freedom (3DOF) pseudoplanar motion often termed Y motion for brevity is first introduced. Then, all possible general architectures of the mechanical generators of a given Y subgroup are obtained by implementing serial arrays of 1DOF Reuleaux pairs or hinged parallelograms. In total, five distinct mechanical generators of Y motion are revealed and seven ones having at least one parallelogram are also derived from them. In order to avoid the singularity that may occur in the limbs, all singular postures of Y-motion generators are also located by detecting the possible linear dependency of the joint twists and the group dependency of displacement sets. The parallel layout of three 4DOF limbs including Y-motion generators with orthogonal planes make up a Cartesian translational parallel manipulator, which produces a motion set of spatial translations. The 3DOF translation of the moving platform is directly controlled by the three 1DOF translations in three orthogonal prismatic fixed joints.

1.
Hervé
,
J. M.
, 1978, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
0094-114X,
13
(
4
), pp.
437
450
.
2.
Hervé
,
J. M.
, 2004, “
Parallel Mechanisms With Pseudo-Planar Motion Generators
,”
On Advances in Robot Kinematics
,
Kluwer
,
Dordrecht
, pp.
431
440
.
3.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
617
674
.
5.
Clavel
,
R.
, 1985, “
Device for Displacing and Positioning an Element in Space
,” PCT Patent Application No. WO 8,703,528.
6.
Hervé
,
J. M.
, 1991, “
Dispositif pour le Déplacement en Translation Spatiale d’un Élément dans L’espace en Particulier pour Robot Mécanique
,” French Patent No. 9,100,286.
7.
Appleberry
,
W. T.
, 1992, “
Anti-Rotation Positioning Mechanism
,” U.S. Patent No. 5,156,062.
8.
Hervé
,
J. M.
, 1995, “
Design of Parallel Manipulators via the Displacement Group
,”
Proceedings of the Ninth World Congress on the Theory of Machines and Mechanisms
,
Milano, Italy
, pp.
2079
2082
.
9.
Tsai
,
L.-W.
, and
Stamper
,
R. E.
, 1996, “
A Parallel Manipulator With Only Translational Degrees of Freedom
,”
Proceedings of the 1996 ASME Design Engineering Technical Conference
,
Irvine, CA
, Paper No. MECH-1152.
10.
Wenger
,
P.
, and
Chablat
,
D.
, 2000, “
Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide
,”
Advances in Robot Kinematics
,
Kluwer
,
Dordrecht
, pp.
305
314
.
11.
Frisoli
,
A.
,
Checcacci
,
D.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
, 2000, “
Synthesis by Screw Algebra of Translating In-Parallel Actuated Mechanisms
,”
Advances in Robot Kinematics
,
Kluwer
,
Dordrecht
, pp.
433
440
.
12.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2003, “
A Family of 3-DOF Translational Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
302
307
.
13.
Lee
,
C.-C.
, and
Hervé
,
J. M.
, 2006, “
Translational Parallel Manipulators With Doubly Planar Limbs
,”
Mech. Mach. Theory
0094-114X,
41
(
4
), pp.
433
455
.
14.
Hervé
,
J. M.
, and
Sparacino
,
F.
, 1991, “
Structural Synthesis of Parallel Robots Generating Spatial Translation
,”
Proceedings of the Fifth IEEE International Conference on Advanced Robotics
,
Pisa, Italy
, Vol.
1
, pp.
808
813
.
15.
Kim
,
D.
, and
Chung
,
W. K.
, 2003, “
Kinematic Condition Analysis of Three-DOF Pure Translational Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
323
331
.
16.
Kong
,
X.-W.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
83
92
.
17.
Jin
,
Q.
, and
Yang
,
T.-L.
, 2004, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
625
639
.
18.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
, 2006, “
Sensitivity Analysis of the Orthoglide: A Three-DOF Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
392
402
.
19.
Li
,
Y.
, and
Xu
,
Q.
, 2006, “
Kinematic Analysis and Design of a New 3-DOF Translational Parallel Manipulator
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
729
737
.
20.
Kong
,
X.-W.
, and
Gosselin
,
C. M.
, 2002, “
Type Synthesis of Linear Translational Parallel Manipulators
,”
Advances in Robot Kinematics
,
Kluwer
,
Dordrecht
, pp.
453
462
.
21.
Kong
,
X.-W.
, and
Gosselin
,
C. M.
, 2002, “
Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator
,”
Int. J. Robot. Res.
0278-3649,
21
(
9
), pp.
791
798
.
22.
Kim
,
H. S.
, and
Tsai
,
L.-W.
, 2002, “
Evaluation of a Cartesian Parallel Manipulator
,”
Advances in Robot Kinematics
,
Kluwer
,
Dordrecht
, pp.
21
28
.
23.
Kim
,
H. S.
, and
Tsai
,
L.-W.
, 2003, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
1050-0472,
125
(
1
), pp.
43
51
.
24.
Gosselin
,
C. M.
, and
Kong
,
X.-W.
, 2004, “
Cartesian Parallel Manipulators
,” U.S. Patent No. 6,729,202.
25.
Lee
,
C.-C.
, and
Hervé
,
J. M.
, 2006, “
Pseudo-Planar Motion Generators
,”
Advances in Robot Kinematics Mechanisms and Motion
,
Springer
,
Heidelberg
, pp.
435
444
.
26.
Reuleaux
,
F.
, 1875,
Theoretische Kinematik:Grunzüge einer Theorie des Maschinenwesens
,
Vieweg
,
Braunschweig
.
27.
Rico
,
J.-M.
,
Gallardo
,
J.
, and
Ravani
,
B.
, 2003, “
Lie Algebra and the Mobility of Kinematic Chains
,”
J. Rob. Syst.
0741-2223,
20
(
8
), pp.
477
499
.
28.
Gibson
,
C. G.
, and
Hunt
,
K. H.
, 1990, “
Geometry of Screw Systems
,”
Mech. Mach. Theory
0094-114X,
25
(
1
), pp.
1
27
.
29.
Hervé
,
J. M.
, 1994, “
The Mathematical Group Structure of the Set of Displacements
,”
Mech. Mach. Theory
0094-114X,
29
(
1
), pp.
73
81
.
30.
Hervé
,
J. M.
, 2006, “Uncoupled Actuation of Pan-Tilt Wrist,” IEEE Trans. Rob., 22(1), pp. 56–64.
31.
Levy-Bruhl
,
P.
, 1967,
Précis de Géométrie
,
Presse Universitaire de France
,
Paris
.
32.
Porteous
,
I. R.
, 1969,
Topological Geometry
,
Van Nostrand Reinhold
,
London
.
33.
Vaisman
,
I.
, 1997,
Analytical Geometry
,
World Scientific
,
Singapore
.
34.
Delassus
,
E.
, 1922, “
Les Chaînes Articulées Fermées et Déformables à Quatre Membres
,”
Bull. Sci. Math.
0007-4497,
46
(
2
), pp.
283
304
.
35.
Waldron
,
K. J.
, 1969, “
The Mobility of Linkages
,” Ph.D. thesis, Stanford University, Stanford, CA.
36.
Lee
,
C.-C.
, 1998, “
An Account of Delassus Three-Bar Overconstrained Mechanisms
,”
Proceedings of the First National Conference on the Design of Mechanisms and Machines
,
Tainan, Taiwan, R.O.C.
, pp.
31
37
.
You do not currently have access to this content.