A parallelogram-based 4 degrees-of-freedom parallel manipulator is presented in this paper. The manipulator can generate the so-called Schönflies motion that allows the end effector to translate in all directions and rotate around an axis parallel to a fixed direction. The theory of group of displacements is applied in the synthesis of this manipulator, which employs parallelograms in every limb. The planar parallelogram kinematic chain provides a high rotational capability and an improved stiffness to the manipulator. This paper shows the kinematic analysis of the manipulator, including the closed-form resolution of the forward and inverse position problems, the velocity, and the singularity analysis. Finally, a prototype of the manipulator, adding some considerations about its singularity-free design, and some technical applications in which the manipulator can be used are presented.

1.
Huang
,
Z.
, and
Li
,
Q.
, 2002, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
(
2
), pp.
131
145
.
2.
Joshi
,
S. A.
, and
Tsai
,
L. W.
, 2002, “
Jacobian Analysis of Limited-dof Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
254
258
.
3.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
4.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
23
(
3
), pp.
237
245
.
5.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3-dof Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
101
108
.
6.
Fang
,
Y.
, and
Tsai
,
L.-W.
, 2004, “
Structure Synthesis of a Class of 3-dof Rotational Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
1
), pp.
117
121
.
7.
Kong
,
X.
, and
Gosselin
,
C.
, 2002, “
A Class of 3-dof Translational Parallel Manipulators With Linear Input-Output Equations
,”
Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
,
C. M.
Gosselin
and
I.
Ebert-Uphoff
, eds., pp.
25
32
.
8.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2003, “
Position Analysis of a New Family of 3-dof Translational Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
316
322
.
9.
Callegari
,
M.
, and
Tarantini
,
M.
, 2003, “
Kinematic Analysis of a Novel Translational Platform
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
308
315
.
10.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3-dof Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
83
92
.
11.
Kong
,
X.
, and
Gosselin
,
C.
, 2005, “
Type Synthesis of 4-dof sp-Equivalent Parallel Manipulators: A Virtual-Chain Approach
,”
Proceedings of CK2005, International Workshop on Computational Kinematics
.
12.
Kong
,
X.
, and
Gosselin
,
C.
, 2004, “
Type Synthesis of 3t1r 4-dof Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
181
190
.
13.
Carricato
,
M.
, 2005, “
Fully Isotropic Four-Degrees-of-Freedom Parallel Mechanisms for Schoenflies Motion
,”
Int. J. Robot. Res.
0278-3649,
24
(
5
), pp.
397
414
.
14.
Hervé
,
J. M.
, 1978, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
15.
Hervé
,
J. M.
, 1994, “
The Mathematical Group Structure of the Set of Displacements
,”
Mech. Mach. Theory
0094-114X,
29
(
1
), pp.
73
81
.
16.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements: A Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
, pp.
719
730
.
17.
Angeles
,
J.
, 2004, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
617
624
.
18.
Angeles
,
J.
, 2005, “
The Degree of Freedom of Parallel Robots: A Group-Theoretic Approach
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, pp.
1017
1024
.
19.
Gogu
,
G.
, 2004,
On Advances in Robot Kinematics
,
Kluwer Academic
,
Dordrecht
, pp.
265
574
.
20.
Liu
,
X.-J.
, and
Wang
,
J.
, 2003, “
Some New Parallel Mechanisms Containing the Planar Four-Bar Parallelogram
,”
Int. J. Robot. Res.
0278-3649,
22
(
9
), pp.
717
732
.
21.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
, 2002, “
New Kinematic Structures for 2-, 3-, 4,- and 5-dof Parallel Manipulator Designs
,”
Mech. Mach. Theory
0094-114X,
37
(
11
), pp.
1395
1411
.
22.
Pierrot
,
F.
, and
Company
,
O.
, 1999, “
H4: A New Family of 4-dof Parallel Robots
,”
Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
.
23.
Company
,
O.
, and
Pierrot
,
F.
, 1999, “
A New 3t-1r Parallel Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
557
562
.
24.
Rolland
,
L. H.
, 1999, “
The Manta and the Kanuk: Novel 4-dof Parallel Mechanisms for Industrial Handling
,”
Proceedings of the ASME Dynamics, Systems and Control Division IMECE’99
.
25.
Company
,
O.
,
Marquet
,
F.
, and
Pierrot
,
F.
, 2003, “
A New High-Speed 4-dof Parallel Robot Synthesis and Modelling Issues
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
3
), pp.
411
420
.
26.
Barbeau
,
E. J.
, 1989,
Polynomials
,
Springer-Verlag
,
New York
.
27.
Altuzarra
,
O.
,
Pinto
,
C.
,
Avilés
,
R.
, and
Hernández
,
A.
, 2004, “
A Practical Procedure to Analyse Singular Configurations in Closed Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
6
), pp.
929
940
.
28.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1996,
Matrix Computations
, 3rd ed.,
The Johns Hopkins University Press
,
Baltimore
.
29.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
30.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1998, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
743
760
.
31.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002, “
Constraint Singularities as c-Space Singularities
,”
Eighth International Symposium on Advances in Robot Kinematics ARK 2002
.
32.
Altuzarra
,
O.
,
Salgado
,
O.
,
Petuya
,
V.
, and
Hernández
,
A.
, 2006, “
Point-Based Jacobian Formulation for Computational Kinematics of Manipulators
,”
Mech. Mach. Theory
0094-114X,
41
(
12
), pp.
1407
1423
.
33.
Fagor Automation®.
You do not currently have access to this content.