This paper describes a user-centered design method, which allows the integration of user’s perceptions in different stages of the design process, by taking into account his/her needs and preferences. It relies on two domains which remain generally distinct: the design with a scientific approach (generally math based) and the integration of users’ perceptions, preferences, tastes, inherently subjective. We apply this method to the design of musical instruments, products for which the feelings of the user are of prime importance, and remain so far difficult to integrate for the design/improvement of an instrument. The methodology is made of two main stages: (1) a subjective study, based on the sensory analysis techniques, during which a “product space” (a family of trumpets) is assessed by a panel of experts according to sensory attributes, and (2) an objective study of the instruments, based on the physical measurement of a specific characteristic of brasses: the acoustic input impedance. Then, data analysis is used to correlate perceptive and objective evaluations, in order to deduce design rules and to formulate the improvement of a perceptive characteristic of the product (the intonation) as a multicriteria optimization problem. The design of the inner shape (the bore) of a “new” instrument is finally made by solving the multicriteria optimization problem using genetic algorithms.

1.
Macdonald
,
A. S.
, 2001, “
Aesthetic Intelligence: Optimizing User-Centered Design
,”
J. Eng. Design
0954-4828,
12
(
1
), pp.
37
45
.
2.
Petiot
,
J.-F.
, and
Yannou
,
B.
, 2004, “
Measuring Consumer Perceptions for a Better Comprehension, Specification and Assessment of Product Semantics
,”
Int. J. Ind. Ergonom.
0169-8141,
33
(
6
), pp.
507
525
.
3.
Hsu
,
S. H.
,
Chuang
,
M. C.
, and
Chang
,
C. C.
, 2000, “
A Semantic Differential Study of Designers’ and Users’ Product Form Perception
,”
Int. J. Ind. Ergonom.
0169-8141,
25
, pp.
375
391
.
4.
Brunswik
,
E.
, 1952,
The Conceptual Framework of Psychology
,
University of Chicago Press
,
Chicago
.
5.
Krippendorff
,
K.
, and
Butter
,
R.
, 1984, “
Product Semantics: Exploring the Symbolic Qualities of Form
,”
Des. Stud.
0142-694X, Spring,
3
(
2
), pp.
4
9
.
6.
Hsiao
,
S. W.
, and
Chen
,
C. H.
, 1997, “
A Semantic and Shape Grammar Based Approach for Product Design
,”
Des. Stud.
0142-694X,
18
, pp.
275
296
.
7.
Mc Cormack
,
J. P.
, and
Cagan
,
J.
, 2004, “
Speaking the Buick Language: Capturing, Understanding, and Exploring Brand Identity With Shape Grammars
,”
Des. Stud.
0142-694X,
25
, pp.
1
29
.
8.
Lemaitre
,
G.
,
Susini
,
P.
,
Winsberg
,
S.
, and
McAdams
,
S.
, 2003, “
Perceptively Based Design of New Car Horn Sounds
,”
Proceedings of the 2003 International Conference on Auditory Display
,
Boston, MA
, Jul. 6–9.
9.
Giboreau
,
A.
,
Navarro
,
S.
,
Faye
,
P.
, and
Dumortier
,
J.
, 2001, “
Sensory Evaluation of Automotive Fabrics: The Contribution of Categorisation Tasks and Non Verbal Information to Set-Up a Descriptive Method of Tactile Properties
,”
Food Quality and Preference
,
12
, pp.
311
322
.
10.
Nagamachi
,
M.
, 1995, “
Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development
,”
Int. J. Ind. Ergonom.
0169-8141,
15
, pp.
3
11
.
11.
Green
,
P.
,
Carroll
,
J.
, and
Goldberg
,
S.
, 1981, “
A General Approach to Product Design Optimization via Conjoint Analysis
,”
J. Marketing
0022-2429,
43
, pp.
17
35
.
12.
Yoshimura
,
M.
, and
Papalambros
,
P. Y.
, 2004, “
Kansei Engineering in Concurrent Product Design: A Progress Review
,”
Proceedings of the TMCE 2004
,
Horvath
,
I.
, and
Xirouchakis
,
P.
, eds.,
Lausanne, Switzerland
, Apr. 13–17.
13.
Hsiao
,
S. W.
, 2002, “
Concurrent Design Method for Developing a New Product
,”
Int. J. Ind. Ergonom.
0169-8141,
29
, pp.
41
55
.
14.
Lai
,
H. H.
,
Lin
,
Y. C.
,
Yeh
,
C. H.
, and
Wei
,
C. H.
, 2006, “
User-Oriented Design for the Optimal Combination on Product Design
,”
Int. J. Prod. Econ.
0925-5273,
100
, pp.
253
267
.
15.
Jindo
,
T.
, and
Hirasago
,
K.
, 1997, “
Application Studies to Car Interior of Kansei Engineering
,”
Int. J. Ind. Ergonom.
0169-8141,
19
, pp.
105
114
.
16.
Pratt
,
R. L.
, and
Bowsher
,
J. M.
, 1978, “
The Subjective Assessment of Trombone Quality
,”
J. Sound Vib.
0022-460X,
57
, pp.
425
435
.
17.
Pratt
,
R. L.
, and
Bowsher
,
J. M.
, 1979, “
The Objective Assessment of Trombone Quality
,”
J. Sound Vib.
0022-460X,
65
, pp.
521
547
.
18.
Petiot
,
J.-F.
,
Poirson
,
E.
,
Le Carrou
,
J. L.
, and
Gilbert
,
J.
, 2003, “
Differentiation of Trumpets’ Sounds: Experimental Study With an Adaptable Depth Mouthpiece
,”
Proceedings of the Stockholm Music Acoustic Conference (SMAC 03)
,
Stockholm, Sweden
, Aug. 6–9, pp.
229
232
.
19.
Poirson
,
E.
,
Petiot
,
J.-F.
, and
Gilbert
,
J.
, 2005, “
Study of the Brightness of Trumpet Tones
,”
J. Acoust. Soc. Am.
0001-4966,
118
(
4
), pp.
2656
2666
.
20.
1998,
Evaluation Sensorielle, Manuel Méthodologique
, 2ième éd., Techniques et Documentation Lavoisier.
21.
Naes
,
T.
, and
Risvik
,
E.
, 1996,
Multivariate Analysis of Data in Sensory Science
,
Elsevier Science
,
Amsterdam
.
22.
Backus
,
J.
, 1976, “
Input Impedance Curves for the Brass Instrument
,”
J. Acoust. Soc. Am.
0001-4966,
60
, pp.
470
480
.
23.
Elliot
,
S. J.
, and
Bowsher
,
J. M.
, 1982, “
Regeneration in Brass Wind Instruments
,”
J. Sound Vib.
0022-460X,
83
, pp.
181
217
.
24.
Petiot
,
J.-F.
,
Poirson
,
E.
, and
Gilbert
,
J.
, 2005, “
User-Centered Design via Sensory Analysis Techniques and Optimisation Procedures: Application to Musical Instrument Design
,”
Proceedings of ICED 2005, International Conference on Engineering Design
,
Melbourne, Australia
.
25.
Caussé
,
R.
,
Kergomard
,
J.
, and
Lurton
,
X.
, 1984, “
Input Impedance of Brass Musical Instrument: Comparison Between Experiment and Numerical Models
,”
J. Acoust. Soc. Am.
0001-4966,
75
, pp.
241
254
.
26.
Cullen
,
J. S.
,
Gilbert
,
J.
, and
Campbell
,
D. M.
, 2000, “
Brass Instruments: Linear Stability Analysis and Experiments With an Artificial Mouth
,”
Acta Acust.
1022-4793,
48
, pp.
73
84
.
27.
Benade
,
A. H.
, and
Gans
,
D. J.
, 1968, “
Sound Production in Wind Instruments
,”
Ann. N.Y. Acad. Sci.
0077-8923,
155
, pp.
247
263
.
28.
BIAS5.1,
Widholm
,
G.
, Vienna Institut für Wiener Klangstil, http://www.bias.at.http://www.bias.at.
29.
Ewins
,
D. J.
, 1984,
Modal Testing: Theory and Practice
,
Wiley
,
New York
, pp.
171
173
.
30.
Brown
,
P. J.
, 1993,
Measurement, Regression, and Calibration
,
Oxford University Press
,
Oxford
.
31.
Zwicker
,
E.
, and
Fastl
,
H.
, 1990,
Psychoacoustics: Facts and Models
,
Springer-Verlag
,
Berlin
.
32.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
33.
Kausel
,
W.
, 2001, “
Optimization of Brasswind Instruments and Its Application in Bore Reconstruction
,”
J. New Music Res.
0929-8215,
30
, pp.
69
82
.
34.
Bängtsson
,
E.
,
Noreland
,
D.
, and
Berggren
,
M.
, 2003, “
Shape Optimization of an Acoustic Horn
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
1533
1571
.
35.
Sette
,
S.
, and
Boullart
,
L.
, 2001, “
Genetic Programming: Principles and Applications
,”
Eng. Applic. Artif. Intell.
0952-1976,
14
, pp.
727
736
.
36.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.