A new explicit methodology for the determination of the force-moment capabilities of nonredundantly and redundantly actuated planar parallel manipulators (PPMs) is presented. This methodology is based on properly adjusting the actuator outputs to their maximum capabilities. As a result, the wrench to be applied or sustained is maximized. For a nonredundantly actuated PPM, one actuator can be maximized, while for a redundantly actuated PPM, one actuator, beyond the one of the nonredundant case, may be maximized for every degree of redundancy added to the mechanism. This methodology is compared to a previous work that required an optimization algorithm. The new method yields more accurate and reliable results and is considerably more efficient. Four studies of force-moment capabilities are considered: maximum force with prescribed moment, maximum applicable force, maximum moment with a prescribed force, and maximum applicable moment. The methodology is used to generate the force-moment capabilities of an existing PPM throughout its workspace.

1.
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Nokleby
,
S. B.
, 2004, “
A Reconfigurable Planar Parallel Manipulator
,”
J. Rob. Syst.
0741-2223,
21
(
12
), pp.
665
675
.
2.
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Nokleby
,
S. B.
, 2001, “
Design of a Reconfigurable Planar Parallel Manipulator (RPPM)
,”
Proceedings of the 2001 CCToMM Symposium
,
St.-Hubert
,
QC, Canada
, 2 pages.
3.
Williams
,
R. L.
, II
, and
Joshi
,
A. R.
, 1999, “
Planar Parallel 3-RPR Manipulator
,”
Proceedings of the Sixth Conference on Applied Mechanisms and Robotics
,
Cincinnati
,
OH
, 7 pages.
4.
Choi
,
J.-K.
,
Mori
,
O.
,
Tsukiai
,
T.
, and
Omata
,
T.
, 2004, “
Self-Reconfigurable Planar Parallel Robot in the Horizontal Plane
,”
Adv. Rob.
0169-1864,
18
(
1
), pp.
45
60
.
5.
Gosselin
,
C.
,
Lemieux
,
S.
, and
Merlet
,
J.-P.
, 1996, “
A New Architecture of Planar Three-Degree-of-Freedom Parallel Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Minneapolis
,
MN
, pp.
3738
3743
.
6.
Gosselin
,
C.
, and
Angeles
,
J.
, 1989, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
35
41
.
7.
Arsenault
,
M.
, and
Boudreau
,
R.
, 2006, “
Synthesis of Planar Parallel Mechanisms While Considering Workspace, Dexterity, Stiffness and Singularity Avoidance
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
69
78
.
8.
Merlet
,
J.-P.
, 1996, “
Redundant Parallel Manipulators
,”
J. Lab. Robot. Autom.
,
8
, pp.
17
24
.
9.
Notash
,
L.
, and
Podhorodeski
,
R. P.
, 1994, “
Uncertainty Configurations of Three-Branch Manipulators: Identification and Elimination
,”
Proceedings of the ASME 23rd Biennial Mechanisms Conference
,
Minneapolis
,
MN
, pp.
459
466
.
10.
Notash
,
L.
, and
Podhorodeski
,
R. P.
, 1996, “
Forward Displacement Analysis and Uncertainty Configurations of Parallel Manipulators With a Redundant Branch
,”
J. Rob. Syst.
0741-2223,
13
(
9
), pp.
587
601
.
11.
Sobejko
,
P.
, and
Podhorodeski
,
R. P.
, 2004, “
Implementation of a Digital 6-DOF Joystick
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
27
(
4
), pp.
295
307
.
12.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
, 1998, “
Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
727
742
.
13.
Firmani
,
F.
, and
Podhorodeski
,
R. P.
, 2004 “
Force Degeneracies for a Redundantly Actuated Planar Parallel Manipulator
,”
Mech. Mach. Theory
0094-114X,
39
(
5
), pp.
459
476
.
14.
Firmani
,
F.
, and
Podhorodeski
,
R. P.
, 2005 “
Force-Unconstrained Poses For a Redundantly-Actuated Planar Parallel Manipulator
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
29
(
3
), pp.
243
356
.
15.
Kumar
,
V.
, and
Waldron
,
K. J.
, 1988, “
Force Distribution in Closed Kinematic Chains
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
6
), pp.
657
664
.
16.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
, 2004, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
40
(
5
), pp.
578
599
.
17.
Nokleby
,
S. B.
, 2005, “
Force-Moment Capabilities of Parallel Manipulators Using Different Redundant-Actuation Configurations
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
29
(
4
), pp.
669
678
.
18.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
19.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Toronto
.
20.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
Dover
,
New York
.
21.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1983,
Matrix Computations
,
The John Hopkins University Press
,
Baltimore, MD
, Chap. 2.
22.
Strang
,
G.
, 1998,
Linear Algebra and its Applications
, 3rd ed.,
Harcourt Brace Jovanovich
,
San Diego, CA
.
23.
MathWorks, 2001,
Optimization Toolbox User’s Guide—Version 2
,
The MathWorks Inc.
,
Natick, MA
.
24.
Merlet
,
J.-P.
,
Gosselin
,
C.
, and
Mouly
,
N.
, 1998, “
Workspaces of Planar Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
1
), pp.
7
20
.
You do not currently have access to this content.