A new approach to laparoscopic surgery involves placing a robot completely within the patient. These in vivo robots are then able to provide visual feedback and task assistance that would otherwise require additional incisions. Wheeled in vivo robots can provide a mobile platform for cameras, graspers, and other sensory devices that assist in laparoscopy. Development of wheeled in vivo mobile robots was achieved through a design process that included modeling, finite element analysis (FEA), bench top testing, and animal tests. Laboratory testing using a wheel test platform identified a helical wheel design as the best candidate. Finite element simulations were then used to better understand how changing the helical wheel geometric parameters affected drawbar force. Several prototype mobile robots were then developed based on these results. The drawbar forces of these robots were measured in the laboratory to confirm the FEA results. Finally, these robots were successfully tested during animal surgeries.

1.
Ballantyne
,
G. H.
, 2002, “
Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring
,”
Surg. Endosc
0930-2794,
16
, pp.
1389
1402
.
2.
Kang
,
H.
, and
Wen
,
J. T.
, 2001, “
Robotic Assistants Aid Surgeons During Minimally Invasive Procedures
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
20
(
1
), pp.
94
104
.
3.
Kim
,
V. B.
,
Chapman
,
W. H. H.
,
Albrecht
,
R. J.
,
Bailey
,
B. M.
,
Young
,
J. A.
,
Nifong
,
L. W.
, and
Chitwood
,
W. R.
, 2002, “
Early Experience With Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci
,”
Surg. Laparosc Endosc
1051-7200,
12
(
1
), pp.
33
44
.
4.
Oleynikov
,
D.
,
Rentschler
,
M.
,
Hadzialic
,
A.
,
Dumpert
,
J.
,
Platt
,
S. R.
, and
Farritor
,
S.
, 2005, “
Miniature Robots Can Assist in Laparoscopic Cholecystectomy
,”
Surg. Endosc
0930-2794,
19
, pp.
473
476
.
5.
Satava
,
R. M.
, 2002, “
Surgical Robotics: The Early Chronicles
,”
J. Clin. Dent.
0895-8831,
12
(
1
), pp.
6
16
.
6.
Schurr
,
M. O.
,
Buess
,
G.
,
Neisius
,
B.
, and
Voges
,
U.
, 2000, “
Robotics and Telemanipulation Technologies for Endoscopic Surgery
,”
Surg. Endosc
0930-2794,
14
, pp.
375
381
.
7.
Moorthy
,
K.
,
Munz
,
Y.
,
Dosis
,
A.
,
Hernandez
,
J.
,
Martin
,
S.
,
Bello
,
F.
,
Rockall
,
T.
, and
Darzi
,
A.
, 2004, “
Dexterity Enhancement With Robotic Surgery
,”
Surg. Endosc
0930-2794,
18
, pp.
790
795
.
8.
Dakin
,
G. F.
, and
Gagner
,
M.
, 2003, “
Comparison of Laparoscopic Skills Performance Between Standard Instruments and Two Surgical Robotic Systems
,”
Surg. Endosc
0930-2794,
17
, pp.
574
579
.
9.
Nio
,
D.
,
Bemelman
,
W. A.
,
den Boer
,
K. T.
,
Dunker
,
M. S.
,
Gouma
,
D. J.
, and
van Gulik
,
T. M.
, 2002, “
Efficiency of Manual vs. Robotical (Zeus) Assisted Laparoscopic Surgery in the Performance of Standardized Tasks
,”
Surg. Endosc
0930-2794,
16
, pp.
412
415
.
10.
Melvin
,
W. S.
,
Needleman
,
B. J.
,
Krause
,
K. R.
,
Schneider
,
C.
, and
Ellison
,
E. C.
, 2002, “
Computer-Enhanced vs. Standard Laparscopic Antireflux Surgery
,”
J. Gastrointest Surg.
1091-255X,
6
, pp.
11
16
.
11.
Franzino
,
R. J.
, 2003, “
The Laprotek Surgical System and the Next Generation of Robotics
,”
Surg. Clin. North Am.
0039-6109,
83
(
6
), pp.
1317
1320
.
12.
Choi
,
D.
, and
Riviere
,
C.
, 2005, “
Flexure-based Manipulator for Active Handheld Microsurgical Instrument
,”
Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)
, pp.
2325
2328
.
13.
Ang
,
W.
, 2004, “
Active Tremor Compensation in Handheld Instrument for Microsurgery
,” Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Technical Report No. SMU-RI-TR-04-28.
14.
Riviere
,
C.
,
Ang
,
W.
, and
Khosla
,
P.
, 2003, “
Toward Active Tremor Canceling in Handheld Microsurgical Instruments
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
5
), pp.
793
800
.
15.
Rosen
,
J.
,
Lum
,
M.
,
Trimble
,
D.
,
Hannaford
,
B.
, and
Sinanan
,
M.
, 2005, “
Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimantal Approaches
,”
Medicine Meets Virtual Reality
,
IOS Press
, Amsterdam, pp.
422
428
.
16.
Rosen
,
J.
,
Hannaford
,
B.
,
MacFarlane
,
M.
, and
Sinanan
,
M.
, 1999, “
Force Controlled and Teleoperated Endoscopic Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
46
, pp.
1212
1221
.
17.
MacFarlane
,
M.
,
Rosen
,
J.
,
Hannaford
,
B.
,
Pellegrini
,
C.
, and
Sinanan
,
M.
, 1999, “
Force Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery
,”
J. Gastrointest Surg.
1091-255X,
3
, pp.
278
285
.
18.
Fukuda
,
T.
,
Guo
,
S.
,
Kosuge
,
K.
,
Arai
,
F.
,
Negoro
,
M.
, and
Nakabayashi
,
K.
, 1994, “
Micro Active Catheter System With Multi Degrees of Freedom
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2290
2295
.
19.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
, 1991, “
Development of Flexible Microactuator and its Applications to Robotics Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1622
1627
.
20.
Phee
,
L.
,
Accoto
,
D.
,
Menciassi
,
A.
,
Stefanini
,
C.
,
Carrozza
,
M.
, and
Dario
,
P.
, 2002, “
Analysis and Development of Locomotion Devices for the Gastrointestinal Tract
,”
IEEE Trans. Biomed. Eng.
0018-9294,
49
(
6
), pp.
613
616
.
21.
Grundfest
,
S. W.
,
Burdick
,
J. W.
, and
Slatkin
,
A. B.
, 1995, “
The Development of a Robotic Endoscope
,”
Proceedings of the 1995 IEEE International Conference on Robotics and Automation
, pp.
162
171
.
22.
Flynn
,
A.
,
Udayakumar
,
K.
,
Barrett
,
D.
,
McLurkin
,
J.
,
Franck
,
D.
, and
Shectman
,
A.
, 1995, “
Tomorrow’s Surgery; Micro-motors and Microrobots for Minimally Invasive Procedures
,”
Minimally Invasive Ther. Allied Technol.
1364-5706,
7
(
4
), pp.
343
352
.
23.
Breedveld
,
P.
, 2006, “
Development of a Rolling Stent Endoscope
,”
Proceedings of the Biomedical Robotics and Biomechatronics International Conference
, pp.
921
926
.
24.
Glukhovsky
,
A.
, and
Jacob
,
H.
, 2004, “
The Development and Application of Wireless Capsule Endoscopy
,”
Int. J. Med. Robot. Comput. Assist. Surgery
,
1
(
1
), pp.
114
123
.
25.
Meron
,
G.
, 2000, “
The Development of the Swallowable Video Capsule
,”
Gastrointest. Endosc.
0016-5107,
6
, pp.
817
819
.
29.
Dario
,
P.
,
Stefanini
,
C.
, and
Menciassi
,
A.
, 2004, “
Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular, Compliant and Slippery Environment
,”
Int. Symp. of Experimental Robotics ISER
, Singapore, June 18–21.
30.
Menciassi
,
A.
,
Moglia
,
A.
,
Gorini
,
S.
,
Pernorio
,
G.
,
Stefanini
,
C.
, and
Dario
,
P.
, 2005, “
Shape Memory Alloy Clamping Devices of a Capsule for Monitoring Tasks in the Gastrointestinal Tract
,”
J. Micromech. Microeng.
0960-1317,
15
,
2045
2055
.
31.
Menciassi
,
A.
,
Stefanini
,
C.
,
Gorini
,
S.
,
Pernorio
,
G.
,
Kim
,
B.
,
Park
,
J.
, and
Dario
,
P.
, 2004, “
Locomotion of a Legged Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results
,”
IEEE Int. Conf. on Engineering in Medicine and Biology
, San Francisco, CA, Sept. 1–4.
32.
Patronik
,
N.
,
Zenati
,
M. A.
, and
Riviere
,
C.
, 2005, “
Preliminary Evaluation of a Mobile Robotic Device for Navigation and Intervention on the Beating Heart
,”
Comput. Aided Surg.
1092-9088,
10
(
4
), pp.
225
232
.
33.
Patronik
,
N.
,
Zenati
,
M. A.
, and
Riviere
,
C.
, 2004, “
Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions
,”
MICCAI
,
C.
Barillot
,
D. R.
Haynor
, and
P.
Hellier
, eds.,
Springer-Verlag
, Berlin, Heidelberg, pp.
9
16
.
34.
Bekker
,
M. G.
, 1960,
Off the Road Locomotion
,
University of Michigan Press
, Ann Arbor, MI.
35.
Onafeko
,
O.
, and
Reece
,
A. R.
, 1967, “
Soil Stresses and Deformations Beneath Rigid Wheel
,”
J. Terramech.
0022-4898,
4
(
1
), pp.
59
80
.
36.
Wong
,
J.
, and
Reece
,
A.
, 1967, “
Prediction of Rigid Wheel Performance Based on the Analysis of Soil-Wheel Stresses, Part I. Performance of Driven Rigid Wheels
,”
J. Terramech.
0022-4898,
4
(
1
), pp.
81
98
.
37.
Muro
,
T.
, 1993, “
Tractive Performance of a Driven Rigid Wheel on Soft Ground Based on the Analysis of Soil-Wheel Interaction
,”
J. Terramech.
0022-4898,
30
(
5
), pp.
351
369
.
38.
Wulfsohn
,
D.
, and
Upadhyaya
,
S.
, 1991, “
Traction of Low-Pressure Pneumatic Tires in Deformable Terrain
,”
SAE Trans.
0096-736X,
100
(
2
), pp.
348
363
.
39.
Saliba
,
J.
, 1990, “
Elastic-Viscoplastic Finite-Element Program for Modeling Tire/Soil Interaction
,”
J. Aircr.
0021-8669,
27
(
4
), pp.
350
357
.
40.
Hiroma
,
T.
,
Wanjii
,
S.
,
Kataoka
,
T.
, and
Ota
,
Y.
, 1997, “
Stress Analysis Using FEM on Stress Distribution Under a Wheel Considering Friction With Adhesion Between a Wheel and Soil
,”
J. Terramech.
0022-4898,
34
(
4
), pp.
225
233
.
41.
Rentschler
,
M.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Iagnemma
,
K.
,
Oleynikov
,
D.
, and
Farritor
,
S.
, 2006, “
Modeling, Analysis, and Experimental Study of In vivo Wheeled Robotic Mobility
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
308
321
.
42.
Rentschler
,
M.
, 2006, “
In vivo Abdominal Surgical Robotics: Tissue Mechanics Modeling, Robotic Design, Experimentation, and Analysis
,” Ph.D. thesis, University of Nebraska, Lincoln, NE.
43.
LS-DYNA
, 2003, Livermore Software Technology Corporation, Livermore, CA.
44.
Rosen
,
J.
,
Brown
,
J. D.
,
Barreca
,
M.
,
Chang
,
L.
,
Sinanan
,
M.
, and
Hannaford
,
B.
, 2002, “
The BlueDRAGON—A System of Measuring the Kinematics and Dynamics of Minimally Invasive Surgical Instruments In-Vivo
,”
IEEE International Conference on Robotics and Automation
, pp.
1876
1881
.
45.
Rentschler
,
M.
,
Dumpert
,
J.
,
Platt
,
S.
,
Farritor
,
S.
, and
Oleynikov
,
D.
, 2006, “
Mobile In Vivo Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy
,”
Surg. Endosc
0930-2794,
20
(
1
), pp.
135
138
.
46.
Rentschler
,
M.
,
Dumpert
,
J.
,
Platt
,
S.
,
Iagnemma
,
K.
,
Oleynikov
,
D.
, and
Farritor
,
S.
, 2007, “
An In vivo Mobile Robot for Surgical Vision and Task Assistance
,”
ASME J. Med. Devices
1932-6181
1
(
1
),
23
29
47.
Rentschler
,
M.
,
Dumpert
,
J.
,
Platt
,
S.
,
Farritor
,
S.
, and
Oleynikov
,
D.
, 2007, “
Natural Orifice Surgery With an Endoluminal Mobile Robot
,”
Surg. Endosc
0930-2794
21
(
7
),
1212
1215
.
You do not currently have access to this content.