This work proposes a novel concept of failure surface frontier (FSF), which is a hyper-surface consisting of the set of non-dominated failure points on the limit states of a failure region. Assumptions, definitions, and benefits of FSF are described first in detail. It is believed that FSF better represents the limit states for reliability assessment (RA) than conventional linear or quadratic approximations on the most probable point. Then, a discriminative sampling based algorithm is proposed to identify FSF, based on which the reliability can be directly assessed for expensive performance functions. Though an approximation model is employed to approximate the limit states, it is only used as a guide for sampling and a supplementary tool for RA. Test results on well-known problems show that FSF-based RA on expensive performance functions achieves high accuracy and efficiency, when compared with the state-of-the-art results archived in literature. Moreover, the concept of FSF and proposed RA algorithm are proved to be applicable to problems of multiple failure regions, multiple most probable points, or failure regions of extremely small probability.

1.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, ”
An Integrated Framework for Probabilistic Optimization Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
562
50
.
2.
Du
,
X.
, and
Sudjianto
,
A.
, 2003, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, September 2–6, DETC2003/DAC48709.
3.
Liu
,
H.
,
Chen
,
W.
,
Sheng
,
J.
, and
Gea
,
H. C.
, 2003, “
Application of the Sequential Optimization and Reliability Assessment Method to Structural Design Problems
,”
ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, September 2–6, DETC2003/DAC48709.
4.
Wu
,
Y. T.
, and
Wang
,
W.
, 1998, “
Efficient Probabilistic Design by Converting Reliability, Constraints to Approximately Equivalent Deterministic Constraints
,”
Trans. SDPS, J. Integ. Des. Process Sci.
2
, pp.
13
21
.
5.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hydrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
221
232
.
6.
Ang
,
A. H.-S.
, and
Tang
,
W. H.
, 1975,
Probability Concepts in Engineering Planning and Design, 1 Basic Principles
,
Wiley
, New York.
7.
Ross
,
S. M.
, 2002,
Simulation
,
Academic Press
, San Diego.
8.
Kloess
,
A.
,
Mourelatos
,
Z.
, and
Meernik
,
P.
, 2004, “
Prababilistic Analysis of An Automotive Body-Door System
,”
Int. J. Veh. Des.
0143-3369,
34
, pp.
101
125
.
9.
Ditlevsen
,
O.
,
Olesen
,
R.
, and
Mohr
,
G.
, 1987, “
Solution of a Class of Load Combination Problems by Directional Simulation
,”
Struct. Safety
0167-4730,
4
, pp.
95
109
.
10.
Walker
,
J. R.
, 1986, “
Practical Application of Variance Reduction Techniques in Probabilistic Assessments
,”
The Second International Conference on Radioactive Waste Management
, Winnipeg, Manitoba, Canada, Sept. 7–11, pp.
517
521
.
11.
Zou
,
T.
,
Mahadevan
,
S.
,
Mourelatos
,
Z.
, and
Meernik
,
P.
, 2002, “
Reliability Analysis of Automotive Body-Door Subsystem
,”
Reliab. Eng. Syst. Saf.
0951-8320,
78
, pp.
315
324
.
12.
Nie
,
J.
, and
Ellingwood
,
B. R.
, 2005, “
Finite Element-Based Structural Reliability Assessment Using Efficient Directional Simulation
,”
J. Eng. Mech.
0733-9399,
131
, pp.
259
267
.
13.
Freudenthal
,
A. M.
, 1956, “
Safety and Probability of Structural Failure
,”
ASCE Trans.
,
121
, pp.
1337
1397
.
14.
Ang
,
A.H.-S.
, and
Tang
,
W. H.
, 1984,
Probability Concepts in Engineering Planning and Design, 2 Decision, Risk and Reliability
,
Wiley
, New York.
15.
Mahadevan
,
S.
, and
Chiralaksanakul
,
A.
, 2005, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
851
857
.
16.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
, pp.
1663
1669
.
17.
Wu
,
Y. T.
, 1994, “
Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis
,”
AIAA J.
0001-1452,
32
, pp.
1717
1723
.
18.
Zou
,
T.
,
Mourelatos
,
Z.
,
Mahadevan
,
S.
, and
Tu
,
J.
, 2003, “
An Indicator Response Surface-Based Monte Carlo Method for Efficient Component and System Reliability Analysis
,”
ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, September 2–6, DETC2003/DAC48708.
19.
Pitchumani
,
R.
, and
Mawardi
,
A.
, 2005, “
SAMS: Stochastic Analysis With Minimal Sampling—A Fast Algorithm for Analysis and Design Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
558
571
.
20.
Wang
,
G. G.
,
Wang
,
L.
, and
Shan
,
S.
, 2005, “
Reliability Assessment Using Discriminative Sampling and Metamodeling
,”
2005 SAE World Congress
,
Cobo Center, Detroit, April 11–14.
21.
Schaumann
,
E. J.
,
Balling
,
R. J.
, and
Day
,
K.
, 1998, “
Genetic Algorithms With Multiple Objectives
,”
Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, St. Louis, Sept. 2–4, pp.
2114
2123
.
22.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2003, “
A Study on the Use of Kriging Models to Approximate Deterministic Computer Models
,”
ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, September 2–6, DETC2003/DAC48762.
23.
Wang
,
G. G.
, and
Simpson
,
T. W.
, 2004, “
Fuzzy Clustering Based Hierarchical Metamodeling for Space Reduction and Design Optimization
,”
J. Eng. Optim.
,
36
, pp.
313
335
.
24.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black Box Functions
,”
J. Global Optim.
0925-5001,
13
, pp.
455
492
.
25.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
, 2002,
DACE: A Matlab Kriging Toolbox
,
Technical University of Denmark
, Kgs. Lyngby, Denmark.
26.
Shan
,
S.
, and
Wang
,
G. G.
, 2005, “
An Efficient Pareto Set Identification Approach for Multi-objective Optimization on Black-Box Functions
,”
ASME J. Mech. Des.
0161-8458
127
, pp.
866
874
.
27.
Chen
,
S.
,
Nikolaidis
,
E.
,
Cudney
,
H. H.
,
Rosca
,
R.
, and
Haftka
,
R.
, 1999, “
Comparison of Probabilistic and Fuzzy Set Methods for Designing Under Uncertainty
,”
40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit
, St. Louis, April 12–15, pp.
2860
2874
, AIAA-99-1579.
28.
Au
,
S. K.
, and
Beck
,
J. L.
, 1999, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
0167-4730,
21
, pp.
135
158
.
29.
Schuëller
,
G. I.
,
Pradlwarter
,
H. J.
, and
Koutsourelakis
,
P. S.
, 2003, “
A Comparative Study of Reliability Estimation Procedures for High Dimensions
,”
16th ASCE Engineering Mechanics Conference
,
University of Washington
, Seattle, July
16
18
, http://www.ce.washington.edu/em03/proceddings/papers/777.pdfhttp://www.ce.washington.edu/em03/proceddings/papers/777.pdf
30.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
385
394
.
You do not currently have access to this content.