Abstract

Crack-based strain sensors (CBS), which are inspired by a spider's slit organ, can provide highly sensitive measurement with great flexibility. Fracture pattern design holds the key to meeting different sensing needs. In this article, a computational model is developed to understand the role of fracture patterns on sensitivity and sensing range of CBS that consist of a platinum (Pt) conductive layer and a polydimethylsiloxane (PDMS) substrate layer. Through the coupled mechanical–electrical finite element analysis, we find that a single mode I through crack can yield better sensing performance than a nonthrough crack in other orientations or a few discrete nonthrough cracks in the same orientation. Creating multiple mode I through cracks has a negligible effect on sensitivity. However, increasing the number of cracks can lead to a higher sensing range. When the same number of cracks is employed, even crack spacing can yield the highest sensing range. Sensitivity can be effectively improved by increasing the crack depth. Conclusions from the computational analysis can provide useful feedback for design and manufacturing of CBS in different applications.

References

1.
Kim
,
D.-H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y.-S.
,
Kim
,
R.-H.
,
Wang
,
S.
,
Wu
,
J.
, et al
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
2.
Tee
,
B. C.-K.
,
Wang
,
C.
,
Allen
,
R.
, and
Bao
,
Z.
,
2012
, “
An Electrically and Mechanically Self-Healing Composite With Pressure- and Flexion-Sensitive Properties for Electronic Skin Applications
,”
Nat. Nanotechnol.
,
7
(
12
), pp.
825
832
.
3.
Gerratt
,
A. P.
,
Michaud
,
H. O.
, and
Lacour
,
S. P.
,
2015
, “
Elastomeric Electronic Skin for Prosthetic Tactile Sensation
,”
Adv. Funct. Mater.
,
25
(
15
), pp.
2287
2295
.
4.
Cheng
,
Y.
,
Wang
,
R.
,
Sun
,
J.
, and
Gao
,
L.
,
2015
, “
A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion
,”
Adv. Mater.
,
27
(
45
), pp.
7365
7371
.
5.
Di
,
J.
,
Yao
,
S.
,
Ye
,
Y.
,
Cui
,
Z.
,
Yu
,
J.
,
Ghosh
,
T. K.
,
Zhu
,
Y.
, and
Gu
,
Z.
,
2015
, “
Stretch-Triggered Drug Delivery From Wearable Elastomer Films Containing Therapeutic Depots
,”
ACS Nano
,
9
(
9
), pp.
9407
9415
.
6.
Lee
,
H.
,
Choi
,
T. K.
,
Lee
,
Y. B.
,
Cho
,
H. R.
,
Ghaffari
,
R.
,
Wang
,
L.
,
Choi
,
H. J.
, et al
,
2016
, “
A Graphene-Based Electrochemical Device With Thermoresponsive Microneedles for Diabetes Monitoring and Therapy
,”
Nat. Nanotechnol.
,
11
(
6
), pp.
566
572
.
7.
Zhao
,
H.
,
O’Brien
,
K.
,
Li
,
S.
, and
Shepherd
,
R. F.
,
2016
, “
Optoelectronically Innervated Soft Prosthetic Hand via Stretchable Optical Waveguides
,”
Sci. Rob.
,
1
(
1
), p.
eaai7529
.
8.
Truby
,
R. L.
,
Wehner
,
M.
,
Grosskopf
,
A. K.
,
Vogt
,
D. M.
,
Uzel
,
S. G. M.
,
Wood
,
R. J.
, and
Lewis
,
J. A.
,
2018
, “
Soft Somatosensitive Actuators via Embedded 3D Printing
,”
Adv. Mater.
,
30
(
15
), p.
1706383
.
9.
Amjadi
,
M.
,
Turan
,
M.
,
Clementson
,
C. P.
, and
Sitti
,
M.
,
2016
, “
Parallel Microcracks-Based Ultrasensitive and Highly Stretchable Strain Sensors
,”
ACS Appl. Mater. Interfaces
,
8
(
8
), pp.
5618
5626
.
10.
Kang
,
D.
,
Pikhitsa
,
P. V.
,
Choi
,
Y. W.
,
Lee
,
C.
,
Shin
,
S. S.
,
Piao
,
L.
,
Park
,
B.
,
Suh
,
K.-Y.
,
Kim
,
T.-I.
, and
Choi
,
M.
,
2014
, “
Ultrasensitive Mechanical Crack-Based Sensor Inspired by the Spider Sensory System
,”
Nature
,
516
(
7530
), pp.
222
226
.
11.
Park
,
B.
,
Kim
,
J.
,
Kang
,
D.
,
Jeong
,
C.
,
Kim
,
K. S.
,
Kim
,
J. U.
,
Yoo
,
P. J.
, and
Kim
,
T.-I.
,
2016
, “
Dramatically Enhanced Mechanosensitivity and Signal-to-Noise Ratio of Nanoscale Crack-Based Sensors: Effect of Crack Depth
,”
Adv. Mater.
,
28
(
37
), pp.
8130
8137
.
12.
Zhu
,
J.
,
Wu
,
X.
,
Jan
,
J.
,
Du
,
S.
,
Evans
,
J.
, and
Arias
,
A. C.
,
2021
, “
Tuning Strain Sensor Performance via Programmed Thin-Film Crack Evolution
,”
ACS Appl. Mater. Interfaces
,
13
(
32
), pp.
38105
38113
.
13.
Zhang
,
C.
,
Zhang
,
J.
,
Chen
,
D.
,
Meng
,
X.
,
Liu
,
L.
,
Wang
,
K.
,
Jiao
,
Z.
, et al
,
2020
, “
Crack-Based and Hair-Like Sensors Inspired From Arthropods: A Review
,”
J. Bionic Eng.
,
17
(
5
), pp.
867
898
.
14.
Park
,
J.
,
Kim
,
M.
,
Hong
,
I.
,
Kim
,
T.
,
Lee
,
E.
,
Kim
,
E.-A.
,
Ryu
,
J.-K.
, et al
,
2019
, “
Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor
,”
Sensors
,
19
(
24
), p.
5504
.
15.
Kim
,
T.
,
Lee
,
T.
,
Lee
,
G.
,
Choi
,
Y.
,
Kim
,
S.
,
Kang
,
D.
, and
Choi
,
M.
,
2018
, “
Polyimide Encapsulation of Spider-Inspired Crack-Based Sensors for Durability Improvement
,”
Appl. Sci.
,
8
(
3
), p.
367
.
16.
Choi
,
Y. W.
,
Kang
,
D.
,
Pikhitsa
,
P. V.
,
Lee
,
T.
,
Kim
,
S. M.
,
Lee
,
G.
,
Tahk
,
D.
, and
Choi
,
M.
,
2017
, “
Ultra-Sensitive Pressure Sensor Based on Guided Straight Mechanical Cracks
,”
Sci. Rep.
,
7
(
1
), p.
40116
.
17.
Lee
,
J.
,
Kim
,
S.
,
Lee
,
J.
,
Yang
,
D.
,
Park
,
B. C.
,
Ryu
,
S.
, and
Park
,
I.
,
2014
, “
A Stretchable Strain Sensor Based on a Metal Nanoparticle Thin Film for Human Motion Detection
,”
Nanoscale
,
6
(
20
), pp.
11932
11939
.
18.
Fratzl
,
P.
, and
Barth
,
F. G.
,
2009
, “
Biomaterial Systems for Mechanosensing and Actuation
,”
Nature
,
462
(
7272
), pp.
442
448
.
19.
Xin
,
Y.
,
Zhou
,
J.
,
Xu
,
X.
, and
Lubineau
,
G.
,
2017
, “
Laser-Engraved Carbon Nanotube Paper for Instilling High Sensitivity, High Stretchability, and High Linearity in Strain Sensors
,”
Nanoscale
,
9
(
30
), pp.
10897
10905
.
20.
Gao
,
Y.
,
Li
,
Q.
,
Wu
,
R.
,
Sha
,
J.
,
Lu
,
Y.
, and
Xuan
,
F.
,
2019
, “
Laser Direct Writing of Ultrahigh Sensitive SiC-Based Strain Sensor Arrays on Elastomer Toward Electronic Skins
,”
Adv. Funct. Mater.
,
29
(
2
), p.
1806786
.
21.
Wang
,
R.
,
Zhu
,
X.
,
Sun
,
L.
,
Shang
,
S.
,
Li
,
H.
,
Ge
,
W.
, and
Lan
,
H.
,
2021
, “
Cost-Effective Fabrication of Transparent Strain Sensors via Micro-Scale 3D Printing and Imprinting
,”
Nanomaterials
,
12
(
1
), p.
120
.
22.
Griffith
,
A. A.
,
1921
, “
VI. The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. Math. Phys. Charact.
,
221
(
582–593
), pp.
163
198
.
23.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(
3
), pp.
293
297
.
24.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
25.
Ballarini
,
R.
,
2013
, “Continuum Analyses of Structures Containing Cracks,”
Materiomics: Multiscale Mechanics of Biological Materials and Structures
,
M. J.
Buehler
, and
R.
Ballarini
, eds.,
Springer Vienna
,
Vienna
, pp.
121
149
.
26.
Peng
,
J.
,
Tomsia
,
A. P.
,
Jiang
,
L.
,
Tang
,
B. Z.
, and
Cheng
,
Q.
,
2021
, “
Stiff and Tough PDMS-MMT Layered Nanocomposites Visualized by AIE Luminogens
,”
Nat. Commun.
,
12
, p.
4539
.
You do not currently have access to this content.