Abstract

Additively manufactured (AM) specimens of 17-4 precipitation hardening (PH) stainless steel (SS) corresponding to the three-point bend test, compact tension test, and single edge cracks were analyzed using the extended finite element method (XFEM) approach. A two-dimensional and three-dimensional elastic-plastic simulation were conducted using “abaqus 6.14” software based on the experimental results and validated with the simulation results. In XFEM, the partition of unity was used to model a crack in the standard finite element mesh. Based on simulation results, the present study compares the mechanical properties of AM 17-4 PH stainless steel samples with those of wrought 17-4 PH samples. Stress intensity factor and J integral were used to measure fracture toughness of the specimens. The change in fracture toughness with strain rate was evaluated by simulating two-dimensional compact tension specimens. The presence of defects such as pores resulting from entrapped gas, un-melted regions, and powder particles resulting from lack of fusion were the main reasons for lower elongation to failure of laser powder bed fusion (L-PBF) produced 17-4 PH SS reported in the literature.

References

1.
Prakash
,
K. S.
,
Nancharaih
,
T.
, and
Rao
,
V. S.
,
2018
, “
Additive Manufacturing Techniques in Manufacturing—An Overview
,”
Mater. Today: Proc.
,
5
(
2
), pp.
3873
3882
.
2.
Yadollahi
,
A.
, and
Shamsaei
,
N.
,
2017
, “
Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities
,”
Int. J. Fatigue
,
98
, pp.
14
31
.
3.
Murr
,
L. E.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Collins
,
S.
,
Amato
,
K. N.
,
Gaytan
,
S. M.
, and
Shindo
,
P. W.
,
2012
, “
Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting
,”
J. Mater. Res. Technol.
,
1
(
3
), pp.
167
177
.
4.
Luecke
,
W. E.
, and
Slotwinski
,
J. A.
,
2014
, “
Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, p.
398
.
5.
Wang
,
F.
,
2012
, “
Mechanical Property Study on Rapid Additive Layer Manufacture Hastelloy® X Alloy by Selective Laser Melting Technology
,”
Int. J. Adv. Manuf. Technol.
,
58
(
5
), pp.
545
551
.
6.
Wang
,
X.
,
Liu
,
Y.
,
Shi
,
T.
, and
Wang
,
Y.
,
2020
, “
Strain Rate Dependence of Mechanical Property in a Selective Laser Melted 17-4 PH Stainless Steel With Different States
,”
Mater. Sci. Eng. A
,
792
, p.
139776
.
7.
Feng
,
C.
,
Zhang
,
L.
,
Wu
,
J.
, and
Yu
,
H.
,
2020
, “
Ductile Fracture Behavior and Flow Stress Modeling of 17-4 PH Martensitic Stainless Steel in Tensile Deformation at High Temperature
,”
Mater. Res. Exp.
,
7
(
4
), p.
046503
.
8.
Das
,
P.
,
Singh
,
I. V.
, and
Jayaganthan
,
R.
,
2012
, “
Crack Growth Simulation of Bulk and Ultrafine Grained 7075 Al Alloy by XFEM
,”
Int. J. Mater. Prod. Technol.
,
44
(
3–4
), pp.
252
276
.
9.
Kapil
,
R.
,
Jayaganthan
,
R.
,
Gairola
,
S.
, and
Verma
,
R.
,
2019
, “
Improvement of Fracture Toughness of Ultra Fine Grained Al–Li 8090 Alloy Processed Through Multi Axial Forging
,”
Mater. Res. Exp.
,
6
(
8
), p.
085064
.
10.
Gairola
,
S.
,
Joshi
,
A.
,
Gangil
,
B.
,
Rawat
,
P.
, and
Verma
,
R.
,
2019
, “
Correlation of Tensile Properties and Fracture Toughness With Microstructural Features for Al–Li 8090 Alloy Processed by Cryorolling and Post-Rolled Annealing
,”
Trans. Indian Inst. Metals
,
72
(
7
), pp.
1743
1755
.
11.
Gairola
,
S.
, and
Jayaganthan
,
R.
,
2021
, “
XFEM Simulation of Tensile and Fracture Behavior of Ultrafine-Grained Al 6061 Alloy
,”
Metals
,
11
(
11
), p.
1761
.
12.
Kothiyal
,
P.
,
Joshi
,
A.
,
Mer
,
K. K.
, and
Gairola
,
S.
,
2021
, “
Influence of Al2O3 and Si3N4 Nano-Particulates on Fracture Toughness Behaviour of Sintered Aluminium
,”
Trans. Indian Inst. Metals
,
75
(
1
), pp.
1
7
.
13.
Ponnusamy
,
P.
,
Sharma
,
B.
,
Masood
,
S. H.
,
Rashid
,
R. R.
,
Rashid
,
R.
,
Palanisamy
,
S.
, and
Ruan
,
D.
,
2021
, “
A Study of Tensile Behavior of SLM Processed 17-4 PH Stainless Steel
,”
Mater. Today: Proc.
,
45
, pp.
4531
4534
.
14.
Melenk
,
J. M.
, and
Babuška
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
289
314
.
15.
Chessa
,
J.
,
Wang
,
H.
, and
Belytschko
,
T.
,
2003
, “
On the Construction of Blending Elements for Local Partition of Unity Enriched Finite Elements
,”
Int. J. Numer. Methods Eng.
,
57
(
7
), pp.
1015
1038
.
16.
Dolbow
,
J.
,
Moës
,
N.
, and
Belytschko
,
T.
,
2000
, “
Modeling Fracture in Mindlin–Reissner Plates With the Extended Finite Element Method
,”
Int. J. Solids Struct.
,
37
(
48–50
), pp.
7161
7183
.
17.
Kumar
,
S.
,
Singh
,
I. V.
, and
Mishra
,
B. K.
,
2013
, “
Numerical Investigation of Stable Crack Growth in Ductile Materials Using XFEM
,”
Proc. Eng.
,
64
, pp.
652
660
.
18.
Verma
,
R.
,
Kumar
,
P.
,
Jayaganthan
,
R.
, and
Pathak
,
H.
,
2022
, “
Extended Finite Element Simulation on Tensile, Fracture Toughness and Fatigue Crack Growth Behaviour of Additively Manufactured Ti6Al4V Alloy
,”
Theor. Appl. Fract. Mech.
,
117
, p.
103163
.
19.
Database
,
C. M.
, and
Abaqus
,
S.
,
2014
,
Abaqus/CAE 6.14 User’s Manual
,
Dassault Systémes Inc.
,
RI
, pp.
1
6
.
20.
Džugan
,
J.
,
Španiel
,
M.
,
Prantl
,
A.
,
Konopík
,
P.
,
Růžička
,
J.
, and
Kuželka
,
J.
,
2018
, “
Identification of Ductile Damage Parameters for Pressure Vessel Steel
,”
Nucl. Eng. Des.
,
328
, pp.
372
380
.
21.
Murugesan
,
M.
, and
Jung
,
D. W.
,
2019
, “
Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications
,”
Materials
,
12
(
4
), p.
609
.
22.
Sobolev
,
A. V.
, and
Radchenko
,
M. V.
,
2016
, “
Use of Johnson–Cook Plasticity Model for Numerical Simulations of the SNF Shipping Cask Drop Tests
,”
Nucl. Energy Technol.
,
2
(
4
), pp.
272
276
.
23.
Wang
,
X.
,
Wang
,
G.
,
Shi
,
T.
, and
Wang
,
Y.
,
2021
, “
Tensile Mechanical Behavior and Spall Response of a Selective Laser Melted 17-4 PH Stainless Steel
,”
Metall. Mater. Trans. A
,
52
(
6
), pp.
2369
2388
.
24.
ASTM E8
,
2010
, “
ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1
,”
Annu. B ASTM Stand.
,
4
(
C
), pp.
1
27
.
25.
Sabooni
,
S.
,
Chabok
,
A.
,
Feng
,
S. C.
,
Blaauw
,
H.
,
Pijper
,
T. C.
,
Yang
,
H. J.
, and
Pei
,
Y. T.
,
2021
, “
Laser Powder Bed Fusion of 17-4 PH Stainless Steel: A Comparative Study on the Effect of Heat Treatment on the Microstructure Evolution and Mechanical Properties
,”
Addit. Manuf.
,
46
, p.
102176
.
26.
Hsu
,
T. H.
,
Huang
,
P. C.
,
Lee
,
M. Y.
,
Chang
,
K. C.
,
Lee
,
C. C.
,
Li
,
M. Y.
,
Chen
,
C. P.
,
Jen
,
K. K.
, and
Yeh
,
A. C.
,
2021
, “
Effect of Processing Parameters on the Fractions of Martensite in 17-4 PH Stainless Steel Fabricated by Selective Laser Melting
,”
J. Alloys Compd.
,
859
, pp.
157758
.
27.
Mahmoudi
,
M.
,
Elwany
,
A.
,
Yadollahi
,
A.
,
Thompson
,
S. M.
,
Bian
,
L.
, and
Shamsaei
,
N.
,
2017
, “
Mechanical Properties and Microstructural Characterization of Selective Laser Melted 17-4 PH Stainless Steel
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
280
294
.
28.
Rafi
,
H. K.
,
Pal
,
D.
,
Patil
,
N.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2014
, “
Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting
,”
J. Mater. Eng. Perform.
,
23
(
12
), pp.
4421
4428
.
29.
Khodabakhshi
,
F.
,
Farshidianfar
,
M. H.
,
Gerlich
,
A. P.
,
Nosko
,
M.
,
Trembošová
,
V.
, and
Khajepour
,
A.
,
2019
, “
Microstructure, Strain-Rate Sensitivity, Work Hardening, and Fracture Behavior of Laser Additive Manufactured Austenitic and Martensitic Stainless Steel Structures
,”
Mater. Sci. Eng. A
,
756
, pp.
545
561
.
30.
Farahmand
,
B.
,
2001
,
Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints
,
Springer US
,
Boston, MA
.
31.
Pasebani
,
S.
,
Ghayoor
,
M.
,
Badwe
,
S.
,
Irrinki
,
H.
, and
Atre
,
S. V.
,
2018
, “
Effects of Atomizing Media and Post Processing on Mechanical Properties of 17-4 PH Stainless Steel Manufactured Via Selective Laser Melting
,”
Addit. Manuf.
,
22
, pp.
127
137
.
32.
Dai
,
F.
, and
Xia
,
K. W.
,
2013
, “
Laboratory Measurements of the Rate Dependence of the Fracture Toughness Anisotropy of Barre Granite
,”
Int. J. Rock Mech. Min. Sci.
,
60
, pp.
57
65
.
33.
Molaei
,
R.
, and
Fatemi
,
A.
,
2019
, “
Crack Paths in Additive Manufactured Metallic Materials Subjected to Multiaxial Cyclic Loads Including Surface Roughness, HIP, and Notch Effects
,”
Int. J. Fatigue
,
124
, pp.
558
570
.
34.
Tong-Yi
,
Z.
, and
Lee
,
S.
,
1993
, “
Stress Intensity Factors of Interfacial Cracks
,”
Eng. Fract. Mech.
,
44
(
4
), pp.
539
544
.
35.
Chen
,
X.
,
Chen
,
Z.
, and
Zhao
,
Y.
,
2015
, “
Analysis of Sheet Fracture Failure Based on XFEM
,”
Open Mech. Eng. J.
,
9
(
1
), pp.
887
891
.
36.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.
37.
LeBrun
,
T.
,
Nakamoto
,
T.
,
Horikawa
,
K.
, and
Kobayashi
,
H.
,
2015
, “
Effect of Retained Austenite on Subsequent Thermal Processing and Resultant Mechanical Properties of Selective Laser Melted 17-4 PH Stainless Steel
,”
Mater. Des.
,
81
, pp.
44
53
.
38.
Wu
,
J. H.
, and
Lin
,
C. K.
,
2002
, “
Tensile and Fatigue Properties of 17-4 PH Stainless Steel at High Temperatures
,”
Metall. Mater. Trans. A
,
33
(
6
), pp.
1715
1724
.
You do not currently have access to this content.