Abstract

In this study, a finite volume simulation framework was developed, validated, and employed for the first time in a new solid-state additive manufacturing and repair process, Additive Friction Stir Deposition (AFSD). The open-source computational fluid dynamics (CFD) code openfoam was used to simulate the deposition of a single layer of Aluminum Alloy 6061 feedstock onto a substrate, using a viscoplastic model to predict the flow behavior of the material. Conjugate heat transfer was considered between the build layer, the surrounding atmosphere, and the substrate, and the resulting temperatures were validated against experimental data recorded for three processing cases. Excellent agreement between simulated and measured temperature data was obtained, as well as a good qualitative prediction of overall build layer morphology. Further analysis of the temperature field was conducted to reveal the variation of temperature in the build direction, an analysis not possible with previous experimental or numerical methods, as well as a global heat transfer analysis to determine the relative importance of various modes of heat input and cooling. Tool heating was found to be the primary heat input to the system, representing 73% of energy input, while conduction to the substrate was the main mode of part cooling, representing 73% of heat loss from the build layer.

References

1.
Lewandowski
,
J. J.
, and
Seifi
,
M.
,
2016
, “
Metal Additive Manufacturing: A Review of Mechanical Properties
,”
Ann. Rev. Mater. Res.
,
46
(
1
), pp.
151
186
.
2.
Azushima
,
A.
,
Kopp
,
R.
,
Korhonen
,
A.
,
Yang
,
D. Y.
,
Micari
,
F.
,
Lahoti
,
G. D.
,
Groche
,
P.
, et al
,
2008
, “
Severe Plastic Deformation (SPD) Processes for Metals
,”
CIRP Ann.
,
57
(
2
), pp.
716
735
.
3.
Pippan
,
R.
,
Wetscher
,
F.
,
Hafok
,
M.
,
Vorhauer
,
A.
, and
Sabirov
,
I.
,
2006
, “
The Limits of Refinement by Severe Plastic Deformation
,”
Adv. Eng. Mater.
,
8
(
11
), pp.
1046
1056
.
4.
Lee
,
W.-B.
, and
Jung
,
S.-B.
,
2004
, “
The Joint Properties of Copper by Friction Stir Welding
,”
Mater. Lett.
,
58
(
6
), pp.
1041
1046
.
5.
Chen
,
Y. C.
, and
Nakata
,
K.
,
2009
, “
Microstructural Characterization and Mechanical Properties in Friction Stir Welding of Aluminum and Titanium Dissimilar Alloys
,”
Mater. Des.
,
30
(
3
), pp.
469
474
.
6.
Gangwar
,
K.
, and
Ramulu
,
M.
,
2018
, “
Friction Stir Welding of Titanium Alloys: A Review
,”
Mater. Des.
,
141
(
1
), pp.
230
255
.
7.
Jordon
,
J. B.
,
Allison
,
P. G.
,
Phillips
,
B. J.
,
Avery
,
D. Z.
,
Kinser
,
R. P.
,
Brewer
,
L. N.
,
Cox
,
C.
, and
Doherty
,
K.
,
2020
, “
Direct Recycling of Machine Chips Through a Novel Solid-State Additive Manufacturing Process
,”
Mater. Des.
,
193
(
1
), p.
108850
.
8.
Rutherford
,
B. A.
,
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Rao
,
H. M.
,
Doherty
,
K. J.
,
Allison
,
P. G.
,
Brewer
,
L. N.
, and
Jordon
,
J. B.
,
2020
, “
Effect of Thermomechanical Processing on Fatigue Behavior in Solid-State Additive Manufacturing of Al-Mg-Si Alloy
,”
Metals
,
10
(
7
), p.
947
.
9.
Rivera
,
O. G.
,
Allison
,
P. G.
,
Brewer
,
L. N.
,
Rodriguez
,
O. L.
,
Jordon
,
J. B.
,
Liu
,
T.
,
Whittington
,
W. R.
, et al
,
2018
, “
Influence of Texture and Grain Refinement on the Mechanical Behavior of AA2219 Fabricated by High Shear Solid State Material Deposition
,”
Mater. Sci. Eng.: A
,
724
(
1
), pp.
547
558
.
10.
Garcia
,
D.
,
Hartley
,
W. D.
,
Rauch
,
H. A.
,
Griffiths
,
R. J.
,
Wang
,
R.
,
Kong
,
Z. J.
,
Zhu
,
Y.
, and
Yu
,
H. Z.
,
2020
, “
In Situ Investigation Into Temperature Evolution and Heat Generation During Additive Friction Stir Deposition: A Comparative Study of Cu and Al-Mg-Si
,”
Addit. Manuf.
,
34
(
1
), p.
101386
.
11.
Griffiths
,
R. J.
,
Petersen
,
D. T.
,
Garcia
,
D.
, and
Yu
,
H. Z.
,
2019
, “
Additive Friction Stir-Enabled Solid-State Additive Manufacturing for the Repair of 7075 Aluminum Alloy
,”
Appl. Sci.
,
9
(
17
), p.
3486
.
12.
Avery
,
D. Z.
,
Phillips
,
B. J.
,
Mason
,
C. J. T.
,
Palermo
,
M.
,
Williams
,
M. B.
,
Cleek
,
C.
,
Rodriguez
,
O. L.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2020
, “
Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy
,”
Metall. Mater. Trans. A
,
51
(
6
), pp.
2778
2795
.
13.
Williams
,
M. B.
,
Robinson
,
T. W.
,
Williamson
,
C. J.
,
Kinser
,
R. P.
,
Ashmore
,
N. A.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2021
, “
Elucidating the Effect of Additive Friction Stir Deposition on the Resulting Microstructure and Mechanical Properties of Magnesium Alloy WE43
,”
Metals
,
11
(
11
), p.
1739
.
14.
Peter Martin
,
L.
,
Luccitti
,
A.
, and
Walluk
,
M.
,
2022
, “
Evaluation of Additive Friction Stir Deposition for the Repair of Cast Al-1.4Si-1.1Cu-1.5Mg-2.1Zn
,”
ASME J. Manuf. Sci. Eng.
,
144
(
6
), p.
061006
.
15.
Rekha
,
M. Y.
,
Avery
,
D.
,
Allison
,
P. G.
,
Jordon
,
J. B.
, and
Brewer
,
L.
,
2021
, “
Nanostructure Evolution in AA7075 Alloy Produced by Solid State Additive Manufacturing—Additive Friction Stir—Deposition
,”
Microsc. Microanal.
,
27
(
S1
), pp.
3118
3119
.
16.
Zhu
,
N.
,
Avery
,
D. Z.
,
Rutherford
,
B. A.
,
Phillips
,
B. J.
,
Allison
,
P. G.
,
Brian Jordon
,
J.
, and
Brewer
,
L. N.
,
2021
, “
The Effect of Anodization on the Mechanical Properties of AA6061 Produced by Additive Friction Stir-Deposition
,”
Metals
,
11
(
11
), p.
1773
.
17.
Avery
,
D. Z.
,
Cleek
,
C.
,
Phillips
,
B. J.
,
Rekha
,
Y. R.
,
Kinser
,
R. P.
,
Rao
,
H.
,
Brewer
,
L.
,
Allison
,
P.
, and
Jordon
,
J. B.
,
2022
, “
Evaluation of Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy Repaired via Additive Friction Stir-Deposition
,”
ASME J. Eng. Mater. Technol.
,
144
(
3
), p.
031003
.
18.
Rivera
,
O. G.
,
Allison
,
P. G.
,
Jordon
,
J. B.
,
Rodriguez
,
O. L.
,
Brewer
,
L. N.
,
McClelland
,
Z.
,
Whittington
,
W. R.
, et al
,
2017
, “
Microstructures and Mechanical Behavior of Inconel 625 Fabricated by Solid-State Additive Manufacturing
,”
Mater. Sci. Eng. A
,
694
(
1
), pp.
1
9
.
19.
Avery
,
D. Z.
,
Rivera
,
O. G.
,
Mason
,
C. J. T.
,
Phillips
,
B. J.
,
Jordon
,
J. B.
,
Su
,
J.
,
Hardwick
,
N.
, and
Allison
,
P. G.
,
2018
, “
Fatigue Behavior of Solid-State Additive Manufactured Inconel 625
,”
JOM
,
70
(
11
), pp.
2475
2484
.
20.
Agrawal
,
P.
,
Haridas
,
R. S.
,
Yadav
,
S.
,
Thapliyal
,
S.
,
Gaddam
,
S.
,
Verma
,
R.
, and
Mishra
,
R. S.
,
2021
, “
Processing-Structure-Property Correlation in Additive Friction Stir Deposited Ti-6Al-4 V Alloy From Recycled Metal Chips
,”
Addit. Manuf.
,
47
(
1
), p.
102259
.
21.
Li
,
B.
,
Shen
,
Y.
,
Lei
,
L.
, and
Hu
,
W.
,
2014
, “
Fabrication and Evaluation of Ti3Alp/Ti–6Al–4 V Surface Layer via Additive Friction-Stir Processing
,”
Mater. Manuf. Process.
,
29
(
4
), pp.
412
417
.
22.
Garcia
,
D.
,
Hartley
,
W. D.
,
Rauch
,
H. A.
,
Griffiths
,
R. J.
,
Wang
,
R.
,
Kong
,
Z. J.
,
Zhu
,
Y.
, and
Yu
,
H. Z.
,
2020
, “
In Situ Investigation Into Temperature Evolution and Heat Generation During Additive Friction Stir Deposition: A Comparative Study of Cu and Al-Mg-Si
,”
Addit. Manuf.
,
34
(
1
), p.
101386
.
23.
Griffiths
,
R. J.
,
Garcia
,
D.
,
Song
,
J.
,
Vasudevan
,
V. K.
,
Steiner
,
M. A.
,
Cai
,
W.
, and
Yu
,
H. Z.
,
2021
, “
Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages
,”
Materialia
,
15
(
1
), p.
100967
.
24.
Phillips
,
B. J.
,
Avery
,
D. Z.
,
Liu
,
T.
,
Rodriguez
,
O. L.
,
Mason
,
C. J. T.
,
Jordon
,
J. B.
,
Brewer
,
L. N.
, and
Allison
,
P. G.
,
2019
, “
Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al–Mg–Si
,”
Materialia
,
7
(
1
), p.
100387
.
25.
Avery
,
D. Z.
,
Cleek
,
C. E.
,
Phillips
,
B. J.
,
Rekha
,
M. Y.
,
Kinser
,
R. P.
,
Rao
,
H. M.
,
Brewer
,
L. N.
,
Allison
,
P. G.
, and
Jordon
,
J. B.
,
2022
, “
Evaluation of Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloy Repaired via Additive Friction Stir Deposition
,”
ASME J. Eng. Mater. Technol.
,
144
(
3
), p.
031003
.
26.
Anderson-Wedge
,
K.
,
Avery
,
D. Z.
,
Daniewicz
,
S. R.
,
Sowards
,
J. W.
,
Allison
,
P. G.
,
Jordon
,
J. B.
, and
Amaro
,
R. L.
,
2021
, “
Characterization of the Fatigue Behavior of Additive Friction Stir-Deposition AA2219
,”
Int. J. Fatigue
,
142
(
1
), p.
105951
.
27.
Assidi
,
M.
,
Fourment
,
L.
,
Guerdoux
,
S.
, and
Nelson
,
T.
,
2010
, “
Friction Model for Friction Stir Welding Process Simulation: Calibrations From Welding Experiments
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
143
155
.
28.
Khandkar
,
M. Z. H.
,
Khan
,
J. A.
, and
Reynolds
,
A. P.
,
2003
, “
Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model
,”
Sci. Technol. Weld. Joining
,
8
(
3
), pp.
165
174
.
29.
Schmidt
,
H.
, and
Hattel
,
J.
,
2005
, “
Modelling Heat Flow Around Tool Probe in Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
10
(
2
), pp.
176
186
.
30.
Cho
,
J.-H.
,
Boyce
,
D. E.
, and
Dawson
,
P. R.
,
2005
, “
Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel
,”
Mater. Sci. Eng. A
,
398
(
1–2
), pp.
146
163
.
31.
Nandan
,
R.
,
Roy
,
G. G.
,
Lienert
,
T. J.
, and
Debroy
,
T.
,
2007
, “
Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel
,”
Acta Mater.
,
55
(
3
), pp.
883
895
.
32.
Nassar
,
H. W.
, and
Khraisheh
,
M. K.
,
2012
, “
Simulation of Material Flow and Heat Evolution in Friction Stir Processing Incorporating Melting
,”
ASME J. Eng. Mater. Technol.
,
134
(
4
), p.
041006
.
33.
Nourani
,
M.
,
Milani
,
A.
,
Yannacopoulos
,
S.
, and
Yan
,
C.
,
2014
, “
An Integrated Multiphysics Model for Friction Stir Welding of 6061 Aluminum Alloy
,”
Int. J. Multiphys.
,
8
(
1
), pp.
29
48
.
34.
Chiumenti
,
M.
,
Cervera
,
M.
,
Agelet de Saracibar
,
C.
, and
Dialami
,
N.
,
2013
, “
Numerical Modeling of Friction Stir Welding Processes
,”
Comput. Methods Appl. Mech. Eng.
,
254
(
1
), pp.
353
369
.
35.
Colegrove
,
P. A.
, and
Shercliff
,
H. R.
,
2005
, “
3-Dimensional CFD Modelling of Flow Round a Threaded Friction Stir Welding Tool Profile
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
320
327
.
36.
Liu
,
X.
,
Chen
,
G.
,
Ni
,
J.
, and
Feng
,
Z.
,
2017
, “
Computational Fluid Dynamics Modeling on Steady-State Friction Stir Welding of Aluminum Alloy 6061 to TRIP Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051004
.
37.
Fraser
,
K.
,
2017
,
Robust and Efficient Meshfree Solid Thermo-Mechanics Simulation of Friction Stir Welding
,
University of Quebec
,
Quebec City, Canada
.
38.
Monaghan
,
J. J.
,
2003
, “
Smoothed Particle Hydrodynamics
,” Ann. Rev. Astron. Astrophys.,
30
(
1
), pp.
543
574
. .
39.
Fraser
,
K.
,
Kiss
,
L.
,
St-Georges
,
L.
, and
Drolet
,
D.
,
2018
, “
Optimization of Friction Stir Weld Joint Quality Using a Meshfree Fully-Coupled Thermo-Mechanics Approach
,”
Metals
,
8
(
2
), p.
101
.
40.
Stubblefield
,
G. G.
,
Fraser
,
K.
,
Phillips
,
B. J.
,
Jordon
,
J. B.
, and
Allison
,
P. G.
,
2021
, “
A Meshfree Computational Framework for the Numerical Simulation of the Solid-State Additive Manufacturing Process, Additive Friction Stir-Deposition (AFS-D)
,”
Mater. Des.
,
202
(
1
), p.
109514
.
41.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), p.
620
.
42.
Jasak
,
H.
,
1996
,
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,
University of London
,
London, UK
.
43.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
44.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
45.
Rudman
,
M.
,
1998
, “
A Volume-Tracking Method for Incompressible Multifluid Flows With Large Density Variations
,”
Int. J. Numer. Methods Fluids
,
28
(
2
), pp.
357
378
.
46.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver InterFoam
,”
Comput. Sci. Discov.
,
5
(
1
), p.
014016
.
47.
Dialami
,
N.
,
Chiumenti
,
M.
,
Cervera
,
M.
, and
Saracibar
,
C. A. d.
,
2015
, “
On the Constitutive Modelling and Friction Laws Used for the Numerical Simulation of Friction Stir Welding Process
,”
Complass XIII
,
Barcelona, Spain
,
September
.
48.
Kuykendall
,
K.
,
Nelson
,
T.
, and
Sorensen
,
C.
,
2013
, “
On the Selection of Constitutive Laws Used in Modeling Friction Stir Welding
,”
Int. J. Mach. Tools Manuf.
,
74
(
1
), pp.
74
85
.
49.
Stubblefield
,
G. G.
,
Fraser
,
K. A.
,
van Iderstine
,
D.
,
Mujahid
,
S.
,
Rhee
,
H.
,
Jordon
,
J. B.
, and
Allison
,
P. G.
,
2022
, “
Elucidating the Influence of Temperature and Strain Rate on the Mechanics of AFS-D Through a Combined Experimental and Computational Approach
,”
J. Mater. Process. Technol.
,
305
(
1
), p.
117593
.
50.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Computational Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Pressures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
547
.
51.
Schmidt
,
H.
, and
Hattel
,
J.
,
2005
, “
A Local Model for the Thermomechanical Conditions in Friction Stir Welding
,”
Model. Simul. Mater. Sci. Eng.
,
13
(
1
), pp.
77
93
.
52.
Hoff
,
N. J.
,
1954
, “
Approximate Analysis of Structures in the Presence of Moderately Large Creep Deformations
,”
Q. Appl. Math.
,
12
(
1
), pp.
49
55
.
53.
Dialami
,
N.
,
Chiumenti
,
M.
,
Cervera
,
M.
, and
Agelet de Saracibar
,
C.
,
2017
, “
Challenges in Thermo-Mechanical Analysis of Friction Stir Welding Processes
,”
Archiv. Comput. Methods Eng.
,
24
(
1
), pp.
189
225
.
54.
Sellars
,
C. M.
, and
Tegart
,
W. J. M.
,
1972
, “
Hot Workability
,”
Int. Metall. Rev.
,
17
(
1
), pp.
1
24
.
55.
Sellars
,
C. M.
, and
McTegart
,
W. J.
,
1966
, “
On the Mechanism of Hot Deformation
,”
Acta Metall.
,
14
(
9
), pp.
1136
1138
.
56.
Sheppard
,
T.
, and
Wright
,
D. S.
,
1979
, “
Determination of Flow Stress: Part 1 Constitutive Equation for Aluminium Alloys at Elevated Temperatures
,”
Met. Technol.
,
6
(
1
), pp.
215
223
.
57.
Sheppard
,
T.
, and
Jackson
,
A.
,
1997
, “
Constitutive Equations for Use in Prediction of Flow Stress During Extrusion of Aluminium Alloys
,”
Mater. Sci. Technol.
,
13
, pp.
203
209
.
58.
Ding
,
S.
,
Shi
,
Q.
, and
Chen
,
G.
,
2021
, “
Flow Stress of 6061 Aluminum Alloy at Typical Temperatures During Friction Stir Welding Based on Hot Compression Tests
,”
Metals
,
11
(
5
), p.
804
.
59.
Allen
,
B. W.
,
2012
,
Creep and Elevated Temperature Mechanical Properties of 5083 and 6061 Aluminum
,
Virginia Polytechnic Institute
,
Blacksburg, VA
.
60.
Macdougall
,
D.
,
2000
, “
Determination of the Plastic Work Converted to Heat Using Radiometry
,”
Exp. Mech.
,
40
(
3
), pp.
298
306
.
61.
Neto
,
D. M.
,
Simões
,
V. M.
,
Oliveira
,
M. C.
,
Alves
,
J. L.
,
Laurent
,
H.
,
Oudriss
,
A.
, and
Menezes
,
L. F.
,
2020
, “
Experimental and Numerical Analysis of the Heat Generated by Plastic Deformation in Quasi-Static Uniaxial Tensile Tests
,”
Mech. Mater.
,
146
(
1
), pp.
1
17
.
62.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
63.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.
64.
Patankar
,
S. v.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.