Abstract

The aim of this study is to present a representative volume element (RVE) for nanocomposites with different microstructural features using a stochastic finite element approach. To that end, computer-simulated microstructures of nanocomposites were generated to include a variety of uncertainty present in geometry, orientation, and distribution of carbon nanotubes. Microstructures were converted into finite element models based on an image-based approach for the determination of elastic properties. For each microstructure type, 50 realizations of synthetic microstructures were generated to capture the variability as well as the average values. Computer-simulated microstructures were generated at different length scales to determine the change in mechanical properties as a function of length scale. A representative volume element is defined at a length scale beyond which no change in variability is observed. The results show that there is no universal RVE applicable to all properties and microstructures; however, the RVE size is highly dependent on microstructural features. Microstructures with agglomeration tend to require larger RVE. Similarly, random microstructures require larger RVE when compared with aligned microstructures.

References

1.
Arora
,
G.
,
Pathak
,
H.
, and
Zafar
,
S.
,
2019
, “
Fabrication and Characterization of Microwave Cured High-Density Polyethylene/Carbon Nanotube and Polypropylene/Carbon Nanotube Composites
,”
J. Compos. Mater.
,
53
(
15
), pp.
2091
2104
. 10.1177/0021998318822705
2.
Bilisik
,
K.
,
Karaduman
,
N. S.
, and
Sapanci
,
E.
,
2019
, “
Short Beam Shear of Nanoprepreg/Nanostitched Three Dimensional Carbon/Epoxy Multiwall Carbon Nanotubes Composites
,”
J. Compos. Mater.
, pp.
1
19
. 10.1177/0021998319863472
3.
Bilisik
,
K.
,
Karaduman
,
N. S.
, and
Sapanci
,
E.
,
2019
, “
Flexural Characterization of 3D Prepreg/Stitched Carbon/Epoxy/Multiwalled Carbon Nanotube Preforms and Composites
,”
J. Compos. Mater.
,
53
(
5
), pp.
563
577
. 10.1177/0021998318787861
4.
El Moumen
,
A.
,
Tarfaoui
,
M.
,
Benyahia
,
H.
, and
Lafdi
,
K.
,
2019
, “
Mechanical Behavior of Carbon Nanotubes-Based Polymer Composites Under Impact Tests
,”
J. Compos. Mater.
,
53
(
7
), pp.
925
940
. 10.1177/0021998318793502
5.
Ranjbar
,
M.
, and
Feli
,
S.
,
2019
, “
Mechanical and Low-Velocity Impact Properties of Epoxy-Composite Beams Reinforced by MWCNTs
,”
J. Compos. Mater.
,
53
(
5
), pp.
693
705
. 10.1177/0021998318790049
6.
Bartels
,
J.
,
Jürgens
,
J. P.
,
Kuhn
,
E.
, and
Ploshikhin
,
V.
,
2019
, “
Effects of Curvature and Alignment of Carbon Nanotubes on the Electrical Conductivity of Carbon Nanotube-Reinforced Polymers Investigated by Mesoscopic Simulations
,”
J. Compos. Mater.
,
53
(
8
), pp.
1033
1047
. 10.1177/0021998318794855
7.
Burmistrov
,
I.
,
Gorshkov
,
N.
,
Ilinykh
,
I.
,
Muratov
,
D.
,
Kolesnikov
,
E.
,
Anshin
,
S.
,
Mazov
,
I.
,
Issi
,
J. P.
, and
Kusnezov
,
D.
,
2016
, “
Improvement of Carbon Black Based Polymer Composite Electrical Conductivity with Additions of MWCNT
,”
Compos. Sci. Technol.
,
129
, pp.
79
85
. 10.1016/j.compscitech.2016.03.032
8.
Fei
,
G.
,
Gong
,
Q.
,
Li
,
D.
,
Lavorgna
,
M.
, and
Xia
,
H.
,
2017
, “
Relationship Between Electrical Conductivity and Spatial Arrangements of Carbon Nanotubes in Polystyrene Nanocomposites: The Effect of Thermal Annealing and Plasticization on Electrical Conductivity
,”
Compos. Sci. Technol.
,
146
, pp.
99
109
. 10.1016/j.compscitech.2017.04.020
9.
Wang
,
X.
,
Bradford
,
P. D.
,
Liu
,
W.
,
Zhao
,
H.
,
Inoue
,
Y.
,
Maria
,
J. P.
,
Li
,
Q.
,
Yuan
,
F. G.
, and
Zhu
,
Y.
,
2011
, “
Mechanical and Electrical Property Improvement in CNT/Nylon Composites Through Drawing and Stretching
,”
Compos. Sci. Technol.
,
71
(
14
), pp.
1677
1683
. 10.1016/j.compscitech.2011.07.023
10.
Arash
,
B.
,
Wang
,
Q.
, and
Varadan
,
V. K.
,
2014
, “
Mechanical Properties of Carbon Nanotube/Polymer Composites
,”
Sci. Rep.
,
4
, pp.
1
8
. 10.1038/srep06479
11.
Corcione
,
C. E.
, and
Frigione
,
M.
,
2012
, “
Characterization of Nanocomposites by Thermal Analysis
,”
Materials
,
5
(
12
), pp.
2960
2980
. 10.3390/ma5122960
12.
Sanei
,
S. H. R.
,
Doles
,
R.
, and
Ekaitis
,
T.
,
2019
, “
Effect of Nanocomposite Microstructure on Stochastic Elastic Properties: An FEA Study
.
ASCE-ASME J. Risk Uncertainty Part B
,
5
, p.
030903
. 10.1115/1.4043410
13.
Dotchev
,
P.
,
Sanei
,
S. H. R.
,
Stienmetz
,
E.
, and
Williams
,
J.
,
2018
, “
Nanocomposites: Manufacturing, Microstructural Characterization and Mechanical Testing
,”
33rd Technical Conference of the American Society for Composites
,
Seattle, WA
,
Sept. 24–26
.
14.
Zhang
,
W.
,
Song
,
L.
, and
Li
,
J.
,
2019
, “
Efficient 3D Reconstruction of Random Heterogeneous Media via Random Process Theory and Stochastic Reconstruction Procedure
,”
Comput. Meth. Appl. Mech. Eng.
,
354
, pp.
1
15
. 10.1016/j.cma.2019.05.033
15.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Meth. Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
. 10.1016/j.cma.2008.11.007
16.
Stefanou
,
G.
,
Savvas
,
D.
, and
Papadrakakis
,
M.
,
2015
, “
Stochastic Finite Element Analysis of Composite Structures Based on Material Microstructure
,”
Compos. Struct.
,
132
, pp.
384
392
. 10.1016/j.compstruct.2015.05.044
17.
Arregui-Mena
,
J. D.
,
Margetts
,
L.
, and
Mummery
,
P. M.
,
2016
, “
Practical Application of the Stochastic Finite Element Method
,”
Arch. Comput. Meth. Eng.
,
23
(
1
), pp.
171
190
. 10.1007/s11831-014-9139-3
18.
Sanei
,
S. H. R.
,
Barsotti
,
E. J.
,
Leonhardt
,
D.
, and
Fertig
,
R. S.
,
2017
, “
Characterization, Synthetic Generation, and Statistical Equivalence of Composite Microstructures
,”
J. Compos. Mater.
,
51
(
13
), pp.
1817
1829
. 10.1177/0021998316662133
19.
Pivovarov
,
D.
,
Zabihyan
,
R.
,
Mergheim
,
J.
,
Willner
,
K.
, and
Steinmann
,
P.
,
2019
, “
On Periodic Boundary Conditions and Ergodicity in Computational Homogenization of Heterogeneous Materials with Random Microstructure
,”
Comput. Meth. Appl. Mech. Eng.
,
357
, p.
112563
. 10.1016/j.cma.2019.07.032
20.
Bansal
,
M.
,
Singh
,
I. V.
,
Patil
,
R. U.
,
Claus
,
S.
, and
Bordas
,
S. P. A.
,
2019
, “
A Simple and Robust Computational Homogenization Approach for Heterogeneous Particulate Composites
,”
Comput. Meth. Appl. Mech. Eng.
,
349
, pp.
45
90
. 10.1016/j.cma.2019.02.001
21.
Pineau
,
P.
, and
Dau
,
F.
,
2012
, “
Subsampling and Homogenization to Investigate Variability of Composite Material Mechanical Properties
,”
Comput. Meth. Appl. Mech. Eng.
,
241–244
, pp.
238
245
. 10.1016/j.cma.2012.06.003
22.
Xu
,
X. F.
, and
Graham-Brady
,
L.
,
2005
, “
A Stochastic Computational Method for Evaluation of Global and Local Behavior of Random Elastic Media
,”
Comput. Meth. Appl. Mech. Eng.
,
194
(
42–44
), pp.
4362
4385
. 10.1016/j.cma.2004.12.001
23.
Sanei
,
S. H. R.
, and
Fertig
,
R. S.
,
2015
, “
Uncorrelated Volume Element for Stochastic Modeling of Microstructures Based on Local Fiber Volume Fraction Variation
,”
Compos. Sci. Technol.
,
117
, pp.
191
198
. 10.1016/j.compscitech.2015.06.010
24.
Sanei
,
S. H. R.
, and
Fertig
,
R. S.
,
2016
, “
Length-scale Dependence of Variability in Epoxy Modulus Extracted From Composite Prepreg
,”
Polym. Test.
,
50
, pp.
297
300
. 10.1016/j.polymertesting.2015.12.015
25.
Montazeri
,
A.
, and
Rafii-Tabar
,
H.
,
2011
, “
Multiscale Modeling of Graphene- and Nanotube-Based Reinforced Polymer Nanocomposites
,”
Phys. Lett.
,
375
, pp.
4034
4040
.10.1016/j.physleta.2011.08.073
26.
Joshi
,
U. A.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2012
, “
Effect of Carbon Nanotube Orientation on the Mechanical Properties of Nanocomposites
,”
Composites Part B
,
43
(
4
), pp.
2063
2071
. 10.1016/j.compositesb.2012.01.063
27.
Kumar
,
D.
, and
Srivastava
,
A.
,
2016
, “
Elastic Properties of CNT-and Graphene-Reinforced Nanocomposites Using RVE
,”
Steel Compos. Struct.
,
21
(
5
), pp.
1085
1103
. 10.12989/scs.2016.21.5.1085
28.
Le
,
M. T.
, and
Huang
,
S. C.
,
2014
, “
Hexagonal Representative Volume Element for Modeling and Analysis of Mechanical Properties of Carbon Nanotube Reinforced Composites
,”
Appl. Mech. Mater.
,
496–500
, pp.
251
254
. 10.4028/www.scientific.net/amm.496-500.251
29.
Mohammadpour
,
E.
,
Awang
,
M.
,
Kakooei
,
S.
, and
Akil
,
H. M.
,
2014
, “
Modeling the Tensile Stress-Strain Response of Carbon Nanotube/Polypropylene Nanocomposites Using Nonlinear Representative Volume Element
,”
Mater. Des.
,
58
, pp.
36
42
. 10.1016/j.matdes.2014.01.007
30.
Alian
,
A. R.
,
El-Borgi
,
S.
, and
Meguid
,
S. A.
,
2016
, “
Multiscale Modeling of the Effect of Waviness and Agglomeration of CNTs on the Elastic Properties of Nanocomposites
,”
Comput. Mater. Sci.
,
117
, pp.
195
204
. 10.1016/j.commatsci.2016.01.029
31.
Ansari
,
R.
,
Hassanzadeh-Aghdam
,
M. K.
, and
Mahmoodi
,
M. J.
,
2016
, “
Three-dimensional Micromechanical Analysis of the CNT Waviness Influence on the Mechanical Properties of Polymer Nanocomposites
,”
Acta Mech.
,
227
(
12
), pp.
3475
3495
. 10.1007/s00707-016-1666-6
32.
Liu
,
Y. J.
, and
Chen
,
X. L.
,
2003
, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
,
35
(
1–2
), pp.
69
81
. 10.1016/S0167-6636(02)00200-4
33.
Chen
,
X. L.
, and
Liu
,
Y. J.
,
2004
, “
Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites
,”
Comput. Mater. Sci.
,
29
(
1
), pp.
1
11
. 10.1016/S0927-0256(03)00090-9
34.
Hu
,
Z.
,
Arefin
,
M. R. H.
,
Yan
,
X.
, and
Fan
,
Q. H.
,
2014
, “
Mechanical Property Characterization of Carbon Nanotube Modified Polymeric Nanocomposites by Computer Modeling
,”
Composites Part B
,
56
, pp.
100
108
. 10.1016/j.compositesb.2013.08.052
35.
Ayatollahi
,
M. R.
,
Shadlou
,
S.
, and
Shokrieh
,
M. M.
,
2011
, “
Multiscale Modeling for Mechanical Properties of Carbon Nanotube Reinforced Nanocomposites Subjected to Different Types of Loading
,”
Compos. Struct.
,
93
(
9
), pp.
2250
2259
. 10.1016/j.compstruct.2011.03.013
36.
Ansari
,
R.
, and
Hassanzadeh-Aghdam
,
M. K.
,
2016
, “
Micromechanical Investigation of Creep-Recovery Behavior of Carbon Nanotube-Reinforced Polymer Nanocomposites
,”
Int. J. Mech. Sci.
,
115–116
, pp.
45
55
. 10.1016/j.ijmecsci.2016.06.005
37.
Seidel
,
G. D.
, and
Lagoudas
,
D. C.
,
2009
, “
A Micromechanics Model for the Electrical Conductivity of Nanotube-Polymer Nanocomposites
,”
J. Compos. Mater.
,
43
(
9
), pp.
917
941
. 10.1177/0021998308105124
38.
Weidt
,
D.
,
2016
, “
Figiel: Finite Strain Compressive Behaviour of CNT/Epoxy Nanocomposites: 2D Versus 3D RVE-Based Modelling
,”
Comput. Mater. Sci.
,
82
, pp.
273
302
. 10.1515/9783110412451_017
39.
Joshi
,
U. A.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Analysis of Elastic Properties of Carbon Nanotube Reinforced Nanocomposites With Pinhole Defects
,”
Comput. Mater. Sci.
,
50
(
11
), pp.
3245
3256
. 10.1016/j.commatsci.2011.06.011
40.
Fang
,
G.
,
Chen
,
C.
,
Meng
,
S.
, and
Liang
,
J.
,
2019
, “
Mechanical Analysis of Three-Dimensional Braided Composites by Using Realistic Voxel-Based Model With Local Mesh Refinement
,”
J. Compos. Mater.
,
53
(
4
), pp.
475
487
. 10.1177/0021998318786541
41.
Young
,
P. G.
,
Beresford-West
,
T. B. H.
,
Coward
,
S. R. L.
,
Notarberardino
,
B.
,
Walker
,
B.
, and
Abdul-Aziz
,
A.
,
2008
, “
An Efficient Approach to Converting Three-Dimensional Image Data Into Highly Accurate Computational Models
,”
Philos. Trans. R. Soc. London, Ser. A
,
366
(
1878
), pp.
3155
3173
. 10.1098/rsta.2008.0090
You do not currently have access to this content.