Direct numerical simulations (DNS) of knitted textile mechanical behavior are for the first time conducted on high performance computing (HPC) using both the explicit and implicit finite element analysis (FEA) to directly assess effective ways to model the behavior of such complex material systems. Yarn-level models including interyarn interactions are used as a benchmark computational problem to enable direct comparison in terms of computational efficiency between explicit and implicit methods. The need for such comparison stems from both a significant increase in the degrees-of-freedom (DOFs) with increasing size of the computational models considered as well as from memory and numerical stability issues due to the highly complex three-dimensional (3D) mechanical behavior of such 3D architectured materials. Mesh and size dependency, as well as parallelization in an HPC environment are investigated. The results demonstrate a satisfying accuracy combined with higher computational efficiency and much less memory requirements for the explicit method, which could be leveraged in modeling and design of such novel materials.

References

1.
Brechet
,
Y.
, and
Embury
,
J. D.
,
2013
, “
Architectured Materials: Expanding Materials Space
,”
Scr. Mater.
,
68
(
1
), pp.
1
3
.
2.
Bouaziz
,
O.
,
Bréchet
,
Y.
, and
Embury
,
J. D.
,
2008
, “
Heterogeneous and Architectured Materials: A Possible Strategy for Design of Structural Materials
,”
Adv. Eng. Mater.
,
10
(
1–2
), pp.
24
36
.
3.
Ashby
,
M.
,
2013
, “
Designing Architectured Materials
,”
Scr. Mater.
,
68
(
1
), pp.
4
7
.
4.
Liu
,
D.
,
Christe
,
D.
,
Shakibajahromi
,
B.
,
Knittel
,
C.
,
Castaneda
,
N.
,
Breen
,
D.
,
Dion
,
G.
, and
Kontsos
,
A.
,
2017
, “
On the Role of Material Architecture in the Mechanical Behavior of Knitted Textiles
,”
Int. J. Solids Struct.
,
109
, pp.
101
111
.
5.
Liu
,
D.
,
Shakibajahromi
,
B.
,
Dion
,
G.
,
Breen
,
D.
, and
Kontsos
,
A.
,
2018
, “
A Computational Approach to Model Interfacial Effects on the Mechanical Behavior of Knitted Textiles
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041007
.
6.
dell′Isola
,
F.
,
Steigmann
,
D.
, and
Corte
,
A. D.
,
2016
, “
Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response
,”
ASME Appl. Mech. Rev.
,
67
(
6
), p.
060804
.
7.
Suard
,
M.
,
Martin
,
G.
,
Lhuissier
,
P.
,
Dendievel
,
R.
,
Vignat
,
F.
,
Blandin
,
J. J.
, and
Villeneuve
,
F.
,
2015
, “
Mechanical Equivalent Diameter of Single Struts for the Stiffness Prediction of Lattice Structures Produced by Electron Beam Melting
,”
Addit. Manuf.
,
8
, pp.
124
131
.
8.
Machado
,
G.
,
Louche
,
H.
,
Alonso
,
T.
, and
Favier
,
D.
,
2015
, “
Superelastic Cellular NiTi Tube-Based Materials: Fabrication, Experiments and Modeling
,”
Mater. Des.
,
65
, pp.
212
220
.
9.
Meza
,
L. R.
, and
Greer
,
J. R.
,
2014
, “
Mechanical Characterization of Hollow Ceramic Nanolattices
,”
J. Mater. Sci.
,
49
(
6
), pp.
2496
2508
.
10.
Rodney
,
D.
,
Fivel
,
M.
, and
Dendievel
,
R.
,
2005
, “
Discrete Modeling of the Mechanics of Entangled Materials
,”
Phys. Rev. Lett.
,
95
, p.
108004
.
11.
Assidi
,
M.
,
Dos Reis
,
F.
, and
Ganghoffer
,
J.-F.
,
2011
, “
Equivalent Mechanical Properties of Biological Membranes From Lattice Homogenization
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1833
1845
.
12.
Laurent
,
C. P.
,
Latil
,
P.
,
Durville
,
D.
,
Rahouadj
,
R.
,
Geindreau
,
C.
,
Orgeas
,
L.
, and
Ganghoffer
,
J. F.
,
2014
, “
Mechanical Behaviour of a Fibrous Scaffold for Ligament Tissue Engineering: Finite Elements Analysis vs. X-Ray Tomography Imaging
,”
J. Mech. Behav. Biomed. Mater.
,
40
, pp.
222
233
.
13.
Kutt
,
L. M.
,
Pifko
,
A. B.
,
Nardiello
,
J. A.
, and
Papazian
,
J. M.
,
1998
, “
Slow-Dynamic Finite Element Simulation of Manufacturing Processes
,”
Comput. Struct.
,
66
(
1
), pp.
1
17
.
14.
Sun
,
J. S.
,
Lee
,
K. H.
, and
Lee
,
H. P.
,
2000
, “
Comparison of Implicit and Explicit Finite Element Methods for Dynamic Problems
,”
J. Mater. Process. Technol.
,
105
(
1–2
), pp.
110
118
.
15.
Naghibi Beidokhti
,
H.
,
Janssen
,
D.
,
Khoshgoftar
,
M.
,
Sprengers
,
A.
,
Perdahcioglu
,
E. S.
,
Van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2016
, “
A Comparison Between Dynamic Implicit and Explicit Finite Element Simulations of the Native Knee Joint
,”
Med. Eng. Phys.
,
38
(
10
), pp.
1123
1130
.
16.
Prior
,
A. M.
,
1994
, “
Applications of Implicit and Explicit Finite Element Techniques to Metal Forming
,”
J. Mater. Process. Technol.
,
45
(
1–4
), pp.
649
656
.
17.
Choi
,
H.-H.
,
Hwang
,
S.-M.
,
Kang
,
Y. H.
,
Kim
,
J.
, and
Kang
,
B. S.
,
2002
, “
Comparison of Implicit and Explicit Finite-Element Methods for the Hydroforming Process of an Automobile Lower Arm
,”
Int. J. Adv. Manuf. Technol.
,
20
(
6
), pp.
407
413
.
18.
Kugener
,
S.
,
1995
, “
Simulation of the Crimping Process by Implicit and Explicit Finite Element Methods
,”
AMP J. Technol.
,
4
, pp. 8–15.
19.
Rust
,
W.
, and
Schweizerhof
,
K.
,
2003
, “
Finite Element Limit Load Analysis of Thin-Walled Structures by ANSYS (Implicit), LS-DYNA (Explicit) and in Combination
,”
Thin-Walled Struct.
,
41
(
2–3
), pp.
227
244
.
20.
Harewood
,
F. J.
, and
McHugh
,
P. E.
,
2007
, “
Comparison of the Implicit and Explicit Finite Element Methods Using Crystal Plasticity
,”
Comput. Mater. Sci.
,
39
(
2
), pp.
481
494
.
21.
Koric
,
S.
,
Hibbeler
,
L. C.
, and
Thomas
,
B. G.
,
2009
, “
Explicit Coupled Thermo-Mechanical Finite Element Model of Steel Solidification
,”
Int. J. Numer. Methods Eng.
,
78
(
1
), pp.
1
31
.
22.
Jung
,
D. W.
, and
Yang
,
D. Y.
,
1998
, “
Step-Wise Combined Implicit–Explicit Finite-Element Simulation of Autobody Stamping Processes
,”
J. Mater. Process. Technol.
,
83
(
13
), pp.
245
260
.
23.
Wang
,
R.
, and
Huawu
,
L.
,
2012
,
Advances in Textile Engineering
,
Trans Tech Publications, Zurich, Switzerland
.
24.
Chapman
,
R. A.
,
2013
,
Smart Textiles for Protection
,
Woodhead Publishing
,
Cambridge, MA
.
25.
Lorussi
,
F.
,
Galatolo
,
S.
,
Bartalesi
,
R.
, and
De Rossi
,
D.
,
2013
, “
Modeling and Characterization of Extensible Wearable Textile-Based Electrogonimeters
,”
IEEE Sens. J.
,
13
(1), pp. 217–228.
26.
Arjmandi
,
M.
,
Ramezani
,
M.
,
Giordano
,
M.
, and
Schmid
,
S.
,
2017
, “
Finite Element Modelling of Sliding Wear in Three-Dimensional Woven Textiles
,”
Tribol. Int.
,
115
, pp.
452
460
.
27.
Karimian
,
M.
,
Hasania
,
H.
, and
Ajeli
,
S.
,
2014
, “
Numerical Modeling of Bagging Behavior of Plain Weft Knitted Fabric Using Finite Element Method
,”
Indian J. Fibre Text. Res.
,
39
, pp.
204
208
.http://nopr.niscair.res.in/handle/123456789/28921
28.
Dixit
,
A.
,
Misra
,
R. K.
, and
Mali
,
H. S.
,
2014
, “
Compression Modeling of Plain Weave Textile Fabric Using Finite Elements
,”
Materialwiss. Werkstofftech.
,
45
(
7
), pp.
600
610
.
29.
Lin
,
H.
,
Clifford
,
M. J.
,
Long
,
A. C.
, and
Sherburn
,
M.
,
2009
, “
Finite Element Modelling of Fabric Shear
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
1
), p.
015008
.
30.
Vassiliadis
,
S. G.
,
Kallivretaki
,
A. E.
, and
Provatidis
,
C. G.
,
2007
, “
Mechanical Simulation of the Plain Weft Knitted Fabrics
,”
Int. J. Clothing Sci. Technol.
,
19
(
2
), pp.
109
130
.
31.
Tran
,
P.
,
Ngo
,
T.
,
Yang
,
E. C.
,
Mendis
,
P.
, and
Humphries
,
W.
,
2014
, “
Effects of Architecture on Ballistic Resistance of Textile Fabrics: Numerical Study
,”
Int. J. Damage Mech.
,
23
(
3
), pp.
359
376
.
32.
Rao
,
M.
,
Duan
,
Y.
,
Keefe
,
M.
,
Powers
,
B.
, and
Bogetti
,
T.
,
2009
, “
Modeling the Effects of Yarn Material Properties and Friction on the Ballistic Impact of a Plain-Weave Fabric
,”
Compos. Struct.
,
89
(
4
), pp.
556
566
.
33.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T.
,
Cheeseman
,
B.
, and
Powers
,
B.
,
2006
, “
A Numerical Investigation of the Influence of Friction on Energy Absorption by a High-Strength Fabric Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
,
32
(
8
), pp.
1299
1312
.
34.
McKee
,
P. J.
,
Sokolow
,
A. C.
,
Yu
,
J. H.
,
Long
,
L. L.
, and
Wetzel
,
E. D.
,
2017
, “
Finite Element Simulation of Ballistic Impact on Single jersey Knit Fabric
,”
Compos. Struct.
,
162
, pp.
98
107
.
35.
Durville
,
D.
,
2012
, “
Contact-Friction Modeling Within Elastic Beam Assemblies: An Application to Knot Tightening
,”
Comput. Mech.
,
49
(
6
), pp.
687
707
.
36.
Samadi
,
R.
, and
Robitaille
,
F.
,
2014
, “
Particle-Based Modeling of the Compaction of Fiber Yarns and Woven Textiles
,”
Textile Res. J.
,
84
(
11
), pp.
1159
1173
.
37.
Wang
,
Y.
, and
Sun
,
X.
,
2001
, “
Digital-Element Simulation of Textile Processes
,”
Compos. Sci. Technol.
,
61
(
2
), pp.
311
319
.
38.
Belytschko
,
T.
,
Liu
,
W. K.
,
Moran
,
B.
, and
Elkhodary
,
K.
,
2013
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
, Hoboken, NJ.
39.
Koric
,
S.
, and
Thomas
,
B. G.
,
2006
, “
Efficient Thermo-Mechanical Model for Solidification Processes
,”
Int. J. Numer. Methods Eng.
,
66
(
12
), pp.
1955
1989
.
40.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.
41.
Bathe
,
K.-J.
,
2015
,
Finite Element Procedures
,
PHI Learning Private Limited
, Delhi, India.
42.
Peirce
,
F. T.
,
1947
, “
Geometrical Principles Applicable to the Design of Functional Fabrics
,”
Text. Res. J.
,
17
(
3
), pp.
123
147
.
43.
Farin
,
G.
,
2001
,
Curves and Surfaces for CAGD: A Practical Guide
, 5th ed.,
Morgan Kaufmann
, Burlington, MA.
44.
Catmull
,
E.
, and
Rom
,
R.
,
1974
, “
A Class of Local Interpolating Splines
,”
Computer Aided Geometric Design
,
Academic Press
,
New York
.
45.
ABAQUS
,
2013
, “
User's Manual, Version 6.13
,” Dassault Systems, Pawtucket, RI.
46.
iForge,
2017
, “
iForge-NCSA's IIndustrial HPC resource
,” iForge.
47.
Koric
,
S.
, and
Gupta
,
A.
,
2016
, “
Sparse Matrix Factorization in the Implicit Finite Element Method on Petascale Architecture
,”
Comput. Methods Appl. Mech. Eng.
,
302
, pp.
281
292
.
You do not currently have access to this content.