Ultrasonic consolidation (UC) has been proven to be a suitable method for fiber embedment into metal matrices. To aid successful embedment of high fiber volumes and to ensure their accurate positioning, research on producing microchannels in combination with adjacent shoulders formed by distribution of the melt onto unique UC sample surfaces with a fiber laser was carried out. This paper investigated the effect of the laser on the microstructure surrounding the channel within an Al 3003-H18 sample. The heat input and the extent of the heat-affected zone (HAZ) from one and multiple passes was examined. The paper explored the influence of air, as an assist gas, on the shoulders and possible oxide formation with regards to future bonding requirements during UC. The authors found that one laser pass resulted in a keyhole-shaped channel filled with a mixture of aluminum and oxides and a symmetrical HAZ surrounding the channel. Multiple passes resulted in the desired channel shape and a wide HAZ which appeared to be an eutectic microstructure. The distribution of molten material showed oxide formation all along the channel outline and especially within the shoulder.

References

1.
White
,
D. R.
,
2003
, “
Ultrasonic Consolidation of Aluminium Tooling
,”
Adv. Mater. Processes
,
161
(
1
), pp.
64
65
.
2.
Kong
,
C. Y.
, and
Soar
,
R. C.
,
2005
, “
Fabrication of Metal-Matrix Composites and Adaptive Composites Using Ultrasonic Consolidation Process
,”
Mater. Sci. Eng., A
,
412
(
1
), pp.
12
18
.10.1016/j.msea.2005.08.041
3.
O'Brien
,
R. L.
,
1991
,
Welding Handbook, Vol. 2—Welding Processes
, 8th ed.,
American Welding Society
,
Miami
, FL, pp.
783
812
.
4.
Langenecker
,
B.
,
1966
, “
Effects of Ultrasound on Deformation Characteristics of Metals
,”
IEEE Trans. Sonics Ultrason.
,
13
(
1
), pp.
1
8
.10.1109/T-SU.1966.29367
5.
Yang
,
Y.
,
Ram
,
G. D. J.
, and
Stucker
,
B. E.
,
2009
, “
Bond Formation and Fiber Embedment During Ultrasonic Consolidation
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4915
4924
.10.1016/j.jmatprotec.2009.01.014
6.
Johnson
,
K.
,
Edmonds
,
H. C.
,
Higginson
,
R. L.
, and
Harris
,
R. A.
,
2011
, “
New Discoveries in Ultrasonic Consolidation Nano-Structures Using Emerging Analysis Techniques
,”
Proc. Inst. Mech. Eng., Part J
,
225
(
4
), pp.
277
287
.10.1177/1350650111401534
7.
Friel
,
R. J.
, and
Harris
,
R. A.
,
2010
, “
A Nanometre-Scale Fibre-to-Matrix Interface Characterization of an Ultrasonically Consolidated Metal Matrix Composite
,”
Proc. Inst. Mech. Eng., Part L
,
224
(
1
), pp.
31
40
.10.1243/14644207JMDA268
8.
Li
,
D.
, and
Soar
,
R. C.
,
2009
, “
Influence of Sonotrode Texture on the Performance of an Ultrasonic Consolidation Machine and the Interfacial Bond Strength
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
1627
1634
.10.1016/j.jmatprotec.2008.04.018
9.
Friel
,
R. J.
,
Johnson
,
K. E.
,
Dickens
,
P. M.
, and
Harris
,
R. A.
,
2010
, “
The Effect of Interface Topography for Ultrasonic Consolidation of Aluminium
,”
Mater. Sci. Eng., A
,
527
(
16
), pp.
4474
4483
.10.1016/j.msea.2010.03.094
10.
Edmonds
,
H. C.
, and
Harris
,
R. A.
,
2011
, “
The Effect of Electro-Discharge Machined Sonotrode Topology on Interlaminar Bonding in Ultrasonic Consolidation
,”
Proc. SPIE
,
7978
, p.
797814
.10.1117/12.880464
11.
Allameh
,
S. M.
,
Mercer
,
C.
,
Popoola
,
D.
, and
Soboyejo
,
W. O.
,
2005
, “
Microstructural Characterization of Ultrasonically Welded Aluminium
,”
ASME J. Eng. Mater. Technol.
,
127
(
1
), pp.
65
74
.10.1115/1.1836792
12.
Sánchez-Amaya
,
J. M.
,
Delgado
,
T.
,
González-Rovira
,
L.
, and
Botana
,
F. J.
,
2009
, “
Laser Welding of Aluminium Alloys 5083 and 6082 Under Conduction Regime
,”
Appl. Surf. Sci.
,
255
(
23
), pp.
9512
9521
.10.1016/j.apsusc.2009.07.081
13.
Weckman
,
D. C.
,
Kerr
,
H. W.
, and
Liu
,
J. T.
,
1997
, “
The Effects of Process Variables on Pulsed Nd: YAG Laser Spot Welds: Part II. AA 1100 Aluminum and Comparison to AISI 409 Stainless Steel
,”
Metall. Mater. Trans. B
,
28
(
4
), pp.
687
700
.10.1007/s11663-997-0043-1
14.
Riveiro
,
A.
,
Quintero
,
F.
,
Lusquiños
,
F.
,
Comesaña
,
R.
, and
Pou
,
J.
,
2010
, “
Parametric Investigation of CO2 Laser Cutting of 2024-T3 Alloy
,”
J. Mater. Process. Technol.
,
210
(
9
), pp.
1138
1152
.10.1016/j.jmatprotec.2010.02.024
15.
Savage
,
W. F.
,
Nippes
,
E. F.
, and
Erickson
,
J. S.
,
1976
, “
Solidification Mechanisms in Fusion Welds
,”
Weld. J. Res. Suppl.
,
76
(8), pp.
213-s
221-s
.
16.
Mohanty
,
P.
, and
Mazumder
,
J.
,
1998
, “
Solidification Behavior and Microstructural Evolution During Laser Beam-Material Interaction
,”
J. Metall. Mater. Trans. B
,
29
(
6
), pp.
1269
1279
.10.1007/s11663-998-0050-x
17.
David
,
S. A.
,
Babu
,
S. S.
, and
Vitek
,
J. M.
,
2003
, “
Welding: Solidification and Microstructure
,”
J. Met.
,
55
(
6
), pp.
14
20
.10.1007/s11837-003-0134-7
18.
Bertelli
,
F.
,
Meza
,
E. S.
,
Goulart
,
P. R.
,
Cheung
,
N.
,
Riva
,
R.
, and
Garcia
,
A.
,
2011
, “
Laser Remelting of Al–1.5 wt.% Fe Alloy Surfaces: Numerical and Experimental Analyses
,”
Opt. Lasers Eng.
,
49
(
4
), pp.
490
497
.10.1016/j.optlaseng.2011.01.007
19.
Venkat
,
S.
,
Albright
,
C. E.
,
Ramasamy
,
S.
, and
Hurley
,
J. P.
,
1997
, “
CO2 Laser Beam Welding of Aluminum 5754-O and 6111-T4 Alloys
,”
Weld. J. Res. Suppl.
,
76
(7), pp.
275
282
.
20.
Pinto
,
M. A.
,
Cheung
,
N.
,
Ierardi
,
M. C. F.
, and
Garcia
,
A.
,
2003
, “
Microstructural and Hardness Investigation of an Aluminum-Copper Alloy Processed by Laser Surface Melting
,”
Mater. Charact.
,
50
(
2–3
), pp.
249
253
.10.1016/S1044-5803(03)00091-3
21.
Wong
,
T. T.
, and
Liang
,
G. Y.
,
1997
, “
Effect of Laser Melting Treatment on the Structure and Corrosion Behaviour of Aluminium and Al–Si Alloys
,”
J. Mater. Process. Technol.
,
63
(
1
), pp.
930
934
.10.1016/S0924-0136(96)00098-2
22.
Pakdil
,
M.
,
Cam
,
G.
,
Kocak
,
M.
, and
Erim
,
S.
,
2011
, “
Microstructural and Mechanical Characterization of Laser Beam Welded AA6056 Al-Alloy
,”
Metall. Mater. Trans. A
,
528
(
24
), pp.
7350
7356
.10.1016/j.msea.2011.06.010
23.
Pfeiler
,
W.
,
2007
,
Alloy Physics: A Comprehensive Reference
,
Wiley-VCH
,
Weinheim, Germany
.
24.
Ramasamy
,
S.
, and
Albright
,
C. E.
,
2000
, “
CO2 and Nd:YAG Laser Beam Welding of 6111-T4 Aluminum Alloy for Automotive Applications
,”
J. Laser Appl.
,
12
(
3
), pp.
101
115
.10.2351/1.521923
25.
McCafferty
,
E.
,
Shafrin
,
E. G.
, and
McKay
,
J. A.
,
1981
, “
Microstructural and Surface Modification of an Aluminum Alloy by Rapid Solidification With a Pulsed Laser
,”
Surf. Technol.
,
14
(
3
), pp.
219
223
.10.1016/0376-4583(81)90083-2
26.
Juarez-Islas
,
J. A.
,
Jones
,
H.
, and
Kurz
,
W.
,
1988
, “
Effect of Solidification Front Velocity on the Characteristics of Aluminium-Rich Al-Mn Alloy Solutions Extended by Rapid Solidification
,”
Mater. Sci. Eng.
,
98
(1), pp.
201
205
.10.1016/0025-5416(88)90155-3
27.
Hegge
,
H. J.
, and
De Hosson
,
J. Th. M.
,
1991
, “
The Influence of Convection on the Homogeneity of Laser-Applied Coatings
,”
J. Mater. Sci.
,
26
(
3
), pp.
711
714
.10.1007/BF00588308
28.
Semak
,
V.
, and
Matsunawa
,
A.
,
1997
, “
The Role of Recoil Pressure in Energy Balance During Laser Materials Processing
,”
J. Phys. D: Appl. Phys.
,
30
(
18
), pp.
2541
2552
.10.1088/0022-3727/30/18/008
29.
Low
,
D. K. Y.
,
Li
,
L.
, and
Corfe
,
A. G.
,
2000
, “
The Influence of Assist Gas on the Mechanism of Material Ejection and Removal During Laser Percussion Drilling
,”
Proc. Inst. Mech. Eng., Part B
,
214
(
7
), pp.
521
527
.10.1243/0954405001518215
30.
Tunna
,
L.
,
O'Neill
,
W.
,
Khan
,
A.
, and
Sutcliffe
,
C.
,
2005
, “
Analysis of Laser Micro Drilled Holes Through Aluminium for Micro-Manufacturing Applications
,”
Opt. Lasers Eng.
,
43
(
9
), pp.
937
950
.10.1016/j.optlaseng.2004.11.001
31.
Baziz
,
L.
,
Nouiri
,
A.
, and
Yousef
,
Y.
,
2006
, “
Influence of a Nanosecond Pulsed Laser on Aluminium Alloys: Distribution of Oxygen
,”
Laser Phys.
,
16
(
12
), pp.
1643
1646
.10.1134/S1054660X06120085
32.
Li
,
D.
, and
Soar
,
R. C.
,
2008
, “
Plastic Flow and Work Hardening of Al Alloy Matrices During Ultrasonic Consolidation Fibre Embedding Process
,”
Mater. Sci. Eng., A
,
498
(
1–2
), pp.
421
429
.10.1016/j.msea.2008.08.037
33.
Masurtschak
,
S.
, and
Harris
,
R. A.
,
2011
, “
Enabling Techniques for Secure Fibre Positioning in Ultrasonic Consolidation for the Production of Smart Material Structures
,”
Proc. SPIE
,
7981
, p.
79816M
.10.1117/12.880611
34.
Han
,
L.
, and
Liou
,
F. W.
,
2004
, “
Numerical Investigation of the Influence of Laser Beam Mode on Melt Pool
,”
Int. J. Heat Mass Transfer
,
4747
(
19
), pp.
4385
4402
.10.1016/j.ijheatmasstransfer.2004.04.036
35.
Masurtschak
,
S.
,
Friel
,
R. J.
,
Gillner
,
A.
,
Ryll
,
J.
, and
Harris
,
R. A.
,
2013
, “
Fiber Laser Induced Surface Modification/Manipulation of an Ultrasonically Consolidated Metal Matrix
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1792
1800
.10.1016/j.jmatprotec.2013.04.008
36.
Riviero
,
A.
,
Quintero
,
F.
,
Lusquiños
,
F.
,
Comesaña
,
R.
,
del Val
,
J.
, and
Pou
,
J.
,
2011
, “
The Role of the Assist Gas Nature in Laser Cutting of Aluminum Alloys
,”
Physics Procedia
,
12
(A), pp.
548
554
.10.1016/j.phpro.2011.03.069
37.
von Allmen
,
M.
,
1976
, “
Laser Drilling Velocity in Metals
,”
J. Appl. Phys.
,
47
(
12
), pp.
5460
5463
.10.1063/1.322578
38.
Mills
,
K.
,
1985
,
Metals Handbook Vol. 9, Metallography and Microstructures
, 9th ed.,
American Society for Metals
, Metals Park,
OH
.
39.
Meyer
,
B. C.
,
Doyen
,
H.
,
Emanowski
,
D.
,
Tempus
,
G.
,
Hirsch
,
T.
, and
Mayr
,
P.
,
2000
, “
Dispersoid-Free Zones in the Heat-Affected Zone of Aluminum Alloy Welds
,”
Metall. Mater. Trans. A
,
31
(
5
), pp.
1453
1459
.10.1007/s11661-000-0263-3
40.
Watkins
,
K. G.
,
Liu
,
Z.
,
McMahon
,
M.
,
Vilar
,
R.
, and
Ferreira
,
M. G. S.
,
1998
, “
Influence of the Overlapped Area on the Corrosion Behaviour of Laser Treated Aluminium Alloys
,”
Mater. Sci. Eng., A
,
252
(
2
), pp.
292
300
.10.1016/S0921-5093(97)00695-3
41.
Fink
,
W. L.
,
1949
,
Physical Metallurgy of Aluminium Alloys
,
American Society for Metals
,
Metals Park, OH
.
42.
St-Onge
,
I.
,
Detalle
,
V.
, and
Sabsabi
,
M.
,
2004
, “
Periodic Variations of Plasma Optical Emission During Repetitive Pulsed-Laser Irradiation of Aluminum in Ambient Air
,”
Appl. Phys. A
,
79
(
4
), pp.
1361
1364
.10.1007/s00339-004-2780-1
You do not currently have access to this content.