Segmented chips are known to form in machining of titanium alloys due to localization of heat in the shear zone, which is a function of machining environment. To investigate the correlation between machining environments and microstructural aspects of chip segmentation, orthogonal turning experiments were performed under three machining environments, viz., room, LN2, and 260 °C. Scanning electron and optical microscopy of chip roots show that the mechanism of chip segment formation changes from plastic strain and mode II fracture at room temperature, to predominant mode I fracture at LN2 and plastic strain leading to shear band formation at 260 °C. The chip segment pitch and shear plane length predicted using Deform™ matched well with the experimental values at room temperature. The microstructural analysis of chips show that higher shear localization occurs at room temperature than the other two temperatures. The depth of machining affected zone (MAZ) on work surfaces was lower at the two temperatures than that of at the room temperature at a higher cutting speed of 91.8 m/min.

References

1.
Bonney
,
J.
,
Yamane
,
Y.
, and
Ezugwu
,
E.
,
2003
, “
An Overview of the Machinability of Aeroengine Alloys
,”
J. Mater. Process. Technol.
,
134
(
2
), pp.
233
253
.10.1016/S0924-0136(02)01042-7
2.
Brandt
,
M.
,
Dargusch
,
M.
, and
Sun
,
S.
,
2009
, “
Characteristics of Cutting Forces and Chip Formation in Machining of Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(7–8), pp.
561
568
.10.1016/j.ijmachtools.2009.02.008
3.
Kirsch
,
J.
,
Sun
,
S.
,
Palanisamy
,
S.
,
Dargusch
,
M.
, and
Bermingham
,
M.
,
2011
, “
New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
51
(6), pp.
500
511
.10.1016/j.ijmachtools.2011.02.009
4.
Palanisamy
,
S.
,
Dargusch
,
M.
, and
Bermingham
,
M.
,
2012
, “
Understanding the Tool Wear Mechanism During Thermally Assisted Machining Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
76
87
.10.1016/j.ijmachtools.2012.07.001
5.
Rajurkar
,
K.
, and
Wang
,
Z.
,
2000
, “
Cryogenic Machining of Hard-to-Cut Materials
,”
Wear
,
239
(2), pp.
168
175
.10.1016/S0043-1648(99)00361-0
6.
Pradeep Kumar
,
M.
, and
Dhananchezian
,
M.
,
2011
, “
Turning of the Ti–6Al–4V Alloy With Modified Cutting Tool Inserts
,”
Cryogenic
,
51
(1), pp.
34
40
.10.1016/j.cryogenics.2010.10.011
7.
Cheng
,
Y.
,
Shane
,
D.
, and
Hong
,
Y.
,
2001
Cooling Approaches and Cutting Temperatures in Cryogenic Machining of Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
41
(10), pp.
1417
1437
.10.1016/S0890-6955(01)00026-8
8.
Mirghani
,
I.
,
Ahsan
,
A.
, and
Khan
,
A.
,
2008
, “
Improving Tool Life Using Cryogenic Cooling
,”
J. Mater. Process. Technol.
,
196
(1–3), pp.
149
154
.10.1016/j.jmatprotec.2007.05.030
9.
Ding
,
Y.
,
Shane
,
W.
, and
Hong
,
Y.
,
2001
, “
Friction and Cutting Forces in Cryogenic Machining of Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
41
(15), pp.
2271
2285
.10.1016/S0890-6955(01)00029-3
10.
Ding
,
Y.
,
Shane
,
J.
, and
Hong
,
Y.
,
2002
, “
Experimental Evaluation of Friction Coefficient and Liquid Nitrogen Lubrication Effect in Cryogenic Machining
,”
Mach. Sci. Technol.
,
6
(
2
), pp.
235
250
.10.1081/MST-120005958
11.
Nalbant
,
M.
, and
Yildiz
,
Y.
,
2008
, “
A Review of Cryogenic Cooling in Machining Processes
,”
Int. J. Mach. Tools Manuf.
,
48
(9), pp.
947
964
.10.1016/j.ijmachtools.2008.01.008
12.
Brandt
,
M.
,
Dargusch
,
M.
, and
Sun
,
S.
,
2010
, “
The Effect of a Laser Beam on Chip Formation During Machining of Ti6Al4V Alloy
,”
Metall. Mater. Trans. A
,
41
(6), pp.
1573
1581
.10.1007/s11661-010-0187-5
13.
Plankenhorn
,
D.
,
Hill
,
V.
, and
Rajagopal
,
S.
,
1982
, “
Machining Aerospace Alloys With the Aid of a 15 kW Laser
,”
J. Appl. Metalworking
,
2
(3), pp.
170
184
.10.1007/BF02834035
14.
Brandt
,
M.
,
Dargusch
,
M.
, and
Sun
,
S.
,
2010
, “
Thermally-Enhanced Machining of Hard-to-Machine Materials—A Review
,”
Int. J. Mach. Tools Manuf.
,
50
(8), pp.
663
680
.10.1016/j.ijmachtools.2010.04.008
15.
Nurul
,
A.
,
Radzi
,
H.
,
Turnad
,
M.
, and
Ginta
,
L.
,
2009
, “
Improved Tool Life in End Milling Ti-6Al-4V Through Workpiece Preheating
,”
Eur. J. Sci. Res.
,
27
(
3
), pp.
384
391
.
16.
Shin
,
Y.
,
Barnes
,
J.
, and
Dandekar
,
C.
,
2010
, “
Machinability Improvement of Titanium Alloy (Ti-6Al-4V) Via LAM and Hybrid Machining
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
174
182
.10.1016/j.ijmachtools.2009.10.013
17.
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
,
Jawahir
,
I.
, and
Arrazola
,
P.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann. Manuf. Technol
,
62
(2), pp.
695
718
.10.1016/j.cirp.2013.05.006
18.
Roüsler
,
J.
,
Siemers
,
C.
, and
Baüker
,
M.
,
2002
, “
Finite Element Simulation of Segmented Chip Formation of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
485
488
.10.1115/1.1459469
19.
Coupard
,
D.
,
Girot
,
F.
, and
Calamaz
,
M.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.10.1016/j.ijmachtools.2007.10.014
20.
Limidob
,
J.
,
Nouaric
,
M.
,
Espinosab
,
C.
,
Couparda
,
D.
,
Salaünb
,
M.
,
Girota
,
F.
,
Chieragattib
,
R.
, and
Calamaza
,
M.
,
2008
, “
Toward a Better Understanding of Tool Wear Effect Through a Comparison Between Experiments and SPH Numerical Modelling of Machining Hard Materials
,”
Int. J. Refract. Met. Hard Mater.
,
27
(
3
), pp.
595
604
.10.1016/j.ijrmhm.2008.09.005
21.
El-Wardany
,
T.
,
Harris
,
W.
, and
Chena
,
L.
,
2004
, “
Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
95
98
.10.1016/S0007-8506(07)60653-2
22.
Wen
,
Q.
,
Woodbury
,
K.
, and
Guo
,
Y.
,
2005
, “
Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
749
759
.10.1115/1.2193549
23.
Karpat
,
Y.
,
2011
, “
Temperature Dependent Flow Softening of Titanium Alloy Ti6Al4V: An Investigation Using Finite Element Simulation of Machining
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
737
749
.10.1016/j.jmatprotec.2010.12.008
24.
Musquar
,
C.
,
Sutter
,
G.
, and
Molinari
,
A.
,
2002
, “
Adiabatic Shear Banding in High-Speed Machining of Ti–6Al–4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
.10.1016/S0749-6419(01)00003-1
25.
Zeren
,
E.
, and
Özel
,
T.
,
2005
, “
A Methodology to Determine Work Material Flow Stress and Tool-Chip Interfacial Friction Properties by Using Analysis of Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
119
129
.10.1016/S0749-6419(01)00003-1
26.
Ulutan
,
D.
, and
Özel
,
T.
,
2012
, “
Prediction of Machining Induced Residual Stresses in Turning of Titanium and Nickel Based Alloys With Experiments and Finite Element Simulations
,”
CIRP Ann. Manuf. Technol
,
61
(
1
), pp.
547
550
.10.1016/j.cirp.2012.03.100
27.
Özel
,
T.
, and
Sima
,
M.
,
2010
, “
Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.10.1016/j.ijmachtools.2010.08.004
28.
Rivière-Lorphèvre
,
E.
,
Filippi
,
E.
, and
Ducobu
,
F.
,
2014
, “
Numerical Contribution to the Comprehension of Saw-Toothed Ti6Al4V
,”
Int. J. Mech. Sci.
,
81
, pp.
77
87
.10.1016/j.ijmecsci.2014.02.017
29.
Gente
,
A.
, and
Hoffmeister
,
H.
,
2001
, “
Chip Formation in Machining Ti6Al4V at Extremely High Cutting Speeds
,”
CIRP Ann.
,
50
(
1
), pp.
49
52
.10.1016/S0007-8506(07)62068-X
30.
Necib
,
K.
,
Haddag
,
B.
,
Atlati
,
B.
,
Nouari
,
M.
, and
Kouadri
,
M.
,
2013
, “
Quantification of the Chip Segmentation in Metal Machining: Application to Machining the Aeronautical Aluminium Alloy AA2024-T351 With Cemented Carbide Tools WC-Co
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
102
113
.10.1016/j.ijmachtools.2012.08.006
31.
Kroneberg
,
M.
,
1966
,
Machining Science and Application
,
Pergamon Press
,
Oxford, UK
, pp.
140
150
.
32.
Chi
,
F.
,
Lin
,
W.
, and
Lee
,
S.
,
1998
, “
Plastic Deformation and Fracture Behaviour of Ti–6Al–4V Alloy Loaded With High Strain Rate Under Various Temperature
,”
Mater. Sci. Eng., A.
,
241
(1–2), pp.
48
59
.10.1016/S0921-5093(97)00471-1
33.
Cook
,
W.
, and
Johnson
,
G.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
, Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
34.
Latham
,
D. J.
, and
Cockcroft
,
M. G.
,
1968
, “
Ductility and the Workability of Metals
,”
J. Inst. Metals
,
96
, pp.
33
39
.
35.
Umbrello
,
D.
,
2008
, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
196
(1–3), pp.
79
87
.10.1016/j.jmatprotec.2007.05.007
36.
Fang
,
B.
,
Xiong
,
J.
,
Yang
,
X.
, and
Yang
,
Y.
,
2006
, “
Adiabatic Shear Bands on the Titanium Side in the Titanium/Mild Steel Explosive Cladding Interface: Experiments, Numerical Simulation, and Microstructure Evolution
,”
Metall. Mater. Trans. A
,
37
, pp.
3131
3137
.10.1007/s11661-006-0193-9
37.
Dieter
,
G.
,
1988
,
Mechanical Metallurgy
,
McGraw-Hill Company
,
London, UK
.
You do not currently have access to this content.