Cellular materials' two important properties—structure and mechanism—can be selectively used for materials design; in particular, they are used to determine the modulus and yield strain. The objective of this study is to gain a better understanding of these two properties and to explore the synthesis of compliant cellular materials (CCMs) with compliant porous structures (CPSs) generated from modified hexagonal honeycombs. An in-plane constitutive CCM model with CPSs of elliptical holes is constructed using the strain energy method, which uses the deformation of hinges around holes and the rotation of links. A finite element (FE) based simulation is conducted to validate the analytical model. The moduli and yield strains of the CCMs with an aluminum alloy are about 4.42 GPa and 0.57% in one direction and about 2.14 MPa and 20.9% in the other direction. CCMs have extremely high positive and negative Poisson's ratios (NPRs) (νxy* ∼ ±40) due to the large rotation of the link member in the transverse direction caused by an input displacement in the longitudinal direction. A parametric study of CCMs with varying flexure hinge geometries using different porous shapes shows that the hinge shape can control the yield strength and strain but does not affect Poisson's ratio which is mainly influenced by rotation of the link members. The synthesized CPSs can also be used to design a new CCM with a Poisson's ratio of zero using a puzzle-piece CPS assembly. This paper demonstrates that compliant mesostructures can be used for next generation materials design in tailoring mechanical properties such as moduli, strength, strain, and Poisson's ratios.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids—Structure and Properties
, 2nd ed.,
Cambridge University
Press,
Cambridge, UK
.
2.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(6)
, pp.
1035
1040
.10.1016/S1359-6454(00)00379-7
3.
Wicks
,
N.
, and
Guest
,
S. D.
,
2004
, “
Single Member Actuation in Large Repetitive Truss Structures
,”
Int. J. Solids Struct.
,
41
(3–4)
, pp.
965
978
.10.1016/j.ijsolstr.2003.09.029
4.
Wang
,
A. J.
, and
McDowell
,
D. L.
,
2004
, “
In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs
,”
ASME J. Eng. Mater. Technol.
,
126
(
2
), pp.
137
156
.10.1115/1.1646165
5.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
, pp.
765
782
.10.1016/j.jmps.2005.10.008
6.
Ju
,
J.
,
Summers
,
J. D.
,
Ziegert
,
J.
, and
Fadel
,
G.
,
2012
, “
Design of Honeycombs for Modulus and Yield Strain in Shear
,”
ASME J. Eng. Mater. Technol.
,
134
(
1
), p.
011002
.10.1115/1.4004488
7.
Ju
,
J.
, and
Summers
,
J. D.
,
2011
, “
Compliant Hexagonal Periodic Lattice Structures Having Both High Shear Strength and High Shear Strain
,”
Mater. Des.
,
32
(
2
), pp.
512
524
.10.1016/j.matdes.2010.08.029
8.
Berglind
,
L.
,
Ju
,
J.
, and
Summers
,
J. D.
,
2010
, “
Method to Design Honeycombs for a Shear Flexible Structure
,”
SAE Int. J. Passenger Cars—Mech. Syst.
,
3
(
1
), pp.
588
597
.10.4271/2010-01-0762
9.
Ju
,
J.
, and
Summers
,
J. D.
,
2011
, “
Shear Compliant Hexagonal Cellular Solids With a Shape Memory Alloy
,”
ASME
Paper No. DETC2011-48790.10.1115/DETC2011-48790
10.
Shankar
,
P.
,
Ju
,
J.
,
Summers
,
J. D.
, and
Zeigert
,
J.
,
2010
, “
Design of Sinusoidal Auxetic Structures for High Shear Flexure
,”
ASME
Paper No. DETC2010-28545.10.1115/DETC2010-28545
11.
Heo
,
H.
,
Ju
,
J.
, and
Kim
,
D.-M.
,
2013
, “
Compliant Cellular Structures: Application to a Passive Morphing Airfoil
,”
Compos. Struct.
,
106
, pp.
560
569
.10.1016/j.compstruct.2013.07.013
12.
Ju
,
J.
,
Kim
,
D.-M.
, and
Kim
,
K.
,
2012
, “
Flexible Cellular Solid Spokes for a Non-Pneumatic Tire
,”
Compos. Struct.
,
94
(8)
, pp.
2285
2295
.10.1016/j.compstruct.2011.12.022
13.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinge
,”
Mach. Des.
,
37
(
27
), pp.
151
156
.
14.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
15.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2002
, “
Design of Symmetric Conic-Section Flexure Hinges Based on Closed-Form Compliance Equations
,”
Mech. Mach. Theory
,
37
(
5
), pp.
477
498
.10.1016/S0094-114X(02)00002-2
16.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2003
, “
Analytical Model of Displacement Application and Stiffness Optimization for a Class of Flexure-Based Compliant Mechanisms
,”
Comput. Struct.
,
81
(32)
, pp.
2797
2810
.10.1016/j.compstruc.2003.07.003
17.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force–Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.10.1115/1.1333096
18.
Muraoka
,
M.
, and
Sanada
,
S.
,
2010
, “
Displacement Amplifier for Piezoelectric Actuator Based on Honeycomb Link Mechanism
,”
Sens. Actuator A
,
157
(1)
, pp.
84
90
.10.1016/j.sna.2009.10.024
19.
Tanaka
,
H.
, and
Shbutani
,
Y.
,
2009
, “
In-Plane Mechanical Behaviors of 2D Repetitive Frameworks With Four-Coordinate Flexible Joints and Elbowed Beam Members
,”
J. Mech. Phys. Solids
,
57
(9)
, pp.
1485
1499
.10.1016/j.jmps.2009.06.001
20.
Evans
,
K. E.
, and
Caddock
,
B. D.
,
1999
, “
Microporous Materials With Negative Poisson's Ratios: II. Mechanisms and Interpretation
,”
J. Phys. D: Appl. Phys.
,
22
(12)
, pp.
1883
1887
.10.1088/0022-3727/22/12/013
21.
Saxena
,
A.
, and
Annthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.10.1007/s001580050084
22.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson's Ratio
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
99
106
.10.1109/84.585787
23.
Mehta
, V
.
,
Frecker
,
M.
, and
Lesieutre
,
G. A.
,
2009
, “
Stress Relief in Contact Aided Compliant Cellular Mechanisms
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091009
.10.1115/1.3165778
24.
Cirone
,
S. A.
,
Hayes
,
G. R.
,
Babcox
,
B.
,
Frecker
,
M.
,
Adair
,
J. H.
, and
Lesieutre
,
G. A.
,
2012
, “
Design of Contract-Aided Compliant Cellular Mechanisms With Curved Walls
,”
J. Intell. Mater. Syst. Struct.
,
23
(
16
), pp.
1773
1785
.10.1177/1045389X12453962
25.
Kim
,
K.
,
Ju
,
J.
, and
Kim
,
D.-M.
,
2013
, “
Porous Materials With High Negative Poisson's Ratios—A Mechanism Based Material Design
,”
Smart Mater. Struct.
,
22
(8)
, p.
084007
.10.1088/0964-1726/22/8/084007
You do not currently have access to this content.