Nonlinear analysis of a thin circular functionally grade plate is formulated in terms of von Karman’s dynamic equations. The plate thickness is constant and temperature-dependent functionally graded material (FGM) properties vary through the thickness of the plate. Forces and moments of the plate, due to large vibration amplitudes, are developed in this paper by solving the governing equations for harmonic vibrations. Corresponding results are illustrated in the case of steady-state free vibration. The results show that the variation of volume fraction index is influential in forces, moments, and FGM properties.
Issue Section:
Research Papers
1.
Praveen
, G. N.
, and Reddy
, J. N.
, 1998, “Nonlinear Transient Thermo Elastic Analysis of Functionally Graded Ceramic-Metal Plates
,” Int. J. Solids Struct.
0020-7683, 35
, pp. 4457
–4476
.2.
Yang
, J.
, and Shen
, H. S.
, 2001, “Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates
,” Compos. Struct.
0263-8223, 54
, pp. 497
–508
.3.
Reddy
, J. N.
, and Cheng
, Z. Q.
, 2003, “Frequency of Functionally Graded Plates With Three-Dimensional Asymptotic Approach
,” J. Eng. Mech.
0733-9399, 129
, pp. 896
–900
.4.
Woo
, J.
, and Meguid
, S. A.
, 2001, “Nonlinear Analysis of Functionally Graded Plates and Shallow Shells
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 7409
–7421
.5.
Chen
, C.-S.
, 2005, “Nonlinear Vibration of a Shear Deformable Functionally Graded Plate
,” Compos. Struct.
0263-8223, 68
, pp. 295
–302
.6.
Selmane
, A.
, and Lakis
, A. A.
, 1999, “Natural Frequencies of Transverse Vibrations of Non-Uniform Circular and Annular Plates
,” J. Sound Vib.
0022-460X, 220
(2
), pp. 225
–249
.7.
Li
, S.-R.
, and Zhou
, Y.-H.
, 2001, “Shooting Method for Non-Linear Vibration and Buckling of Heated Orthotropic Circular Plates
,” J. Sound Vib.
0022-460X, 248
, pp. 379
–386
.8.
Haterbouch
, M.
, and Benamar
, R.
, 2004, “The Effects of Large Vibration Amplitudes on the Axisymmetric Mode Shapes and Natural Frequencies of Clamped Thin Isotropic Circular Plates. Part II: Iterative and Explicit Analytical Solution for Non-Linear Coupled Transverse and In-Plane Vibrations
,” J. Sound Vib.
0022-460X, 277
, pp. 1
–30
.9.
Touloukian
, Y. S.
, 1967, Thermo Physical Properties of High Temperature Solid Materials
, Macmillan
, New York
, Chap. 3.10.
Praveen
, G. N.
, and Reddy
, J. N.
, 1998, “Nonlinear Transient Thermo Elastic Analysis of Functionally Graded Ceramic-Metal Plates
,” Int. J. Solids Struct.
0020-7683, 33
, pp. 4457
–4476
.11.
Reddy
, J. N.
, 2000, “Analysis of Functionally Graded Plates
,” Int. J. Numer. Methods Eng.
0029-5981, 47
, pp. 663
–684
.12.
Shafiee
, H.
, Naei
, M. H.
, and Eslami
, M. R.
, 2006, “In-Plane and Out-of-Plane Buckling of Arches Made of FGM
,” Int. J. Mech. Sci.
0020-7403, 48
, pp. 907
–915
.13.
Reddy
, J. N.
, and Chin
, C. D.
, 1998, “Thermo-Mechanical Analysis of Functionally Graded Cylinders and Plates
,” J. Therm. Stresses
0149-5739, 21
, pp. 593
–626
.14.
Brush
, D. O.
, and Almroth
, B. O.
, 1975, Buckling of Bars, Plates and Shells
, McGraw-Hill
, New York
, Chap. 3.15.
Najafizadeh
, M. M.
, and Eslami
, M. R.
, 2002, “Buckling Analysis of Circular Plates of Functionally Graded Materials Under Uniform Radial Compression
,” Int. J. Mech. Sci.
0020-7403, 44
, pp. 2479
–2493
.16.
Timoshenko
, S.
, and Woinowsky-Krieger
, S.
, 1959, Theory of Plates and Shells
, 2nd ed., McGraw-Hill
, New York
, Chap. 2.17.
Dumir
, P. C.
, Kumar
, C. R.
, and Gandhi
, M. L.
, 1985, “Non-Linear Axisymmetric Vibration of Orthotropic Thin Circular Plates on Elastic Foundations
,” J. Sound Vib.
0022-460X, 103
, pp. 273
–285
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.