The contact characteristics of ceramic-metallic interactions are of critical importance in the design of high-speed ceramic rolling contact bearings. This type of interaction is not described well by traditional indentation tests since small displacements and barely discernable indentations are encountered. In this work, an optical microscopy system is described that is used to measure small indenter displacements accurately. Images of the indenter are taken throughout the test and processed using sophisticated edge detection algorithms to accurately determine the position of the center of the indenter. Thus, the indenter displacements on the order of 1μm can be measured independent of any structural flexibility present in the test apparatus. Experimental indentation tests using an alumina indenter mounted on a stainless steel post were performed and processed with the optical system. The results were compared to existing analytical models for fully elastic and elastoplastic cases as well as a finite element model developed using a Johnson–Cook plasticity material model. The comparison shows that the analytical models do not predict the experimental results well, whereas the finite element model agrees very well. Subsequent analysis of the finite element model shows that the size of the contact zone and pressure distributions, both very important in the design of bearings, can be more accurately described than the traditional analytical treatments.

1.
Hertz
,
H.
, 1882, “
Über die berührung fester elastiche körper (On the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
2.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Oxford University Press
,
United Kingdom
.
3.
Carè
,
G.
, and
Fischer-Cripps
,
A. C.
, 1997, “
Elastic-Plastic Indentation Stress Fields Using the Finite-Element Method
,”
J. Mater. Sci.
0022-2461,
32
, pp.
5653
5659
.
4.
Fischer-Cripps
,
A. C.
, 1997, “
Elastic-Plastic Behaviour in Materials Loaded With a Spherical Indenter
,”
J. Mater. Sci.
0022-2461,
32
, pp.
727
736
.
5.
Lin
,
L. P.
, and
Lin
,
J. F.
, 2006, “
A New Method for Elastic-Plastic Contact Analysis of a Deformable Sphere and a Rigid Flat
,”
J. Tribol.
0742-4787,
128
, pp.
221
229
.
6.
Kosoir
,
F.
,
Guyot
,
N.
, and
Maurice
,
G.
, 1999, “
Analysis of Frictional Contact Problem Using Boundary Element Method and Domain Decomposition Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
65
82
.
7.
Mackerle
,
J.
, 2004, “
Finite Element Modelling and Simulation of Indentation Testing: A Bibliography (1990-2002)
,”
Eng. Comput.
0177-0667,
21
(
1
), pp.
23
52
.
8.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
, 1997, “
Indentation of Solids With Gradients in Elastic Properties: Part II. Axisymmetric Indentors
,”
Int. J. Solids Struct.
0020-7683,
34
(
19
), pp.
2393
2428
.
9.
Demir
,
A.
, and
Sonmez
,
F. O.
, 2004, “
Prediction of Brinell Hardness Distribution in Cold Formed Parts
,”
J. Eng. Mater. Technol.
0094-4289,
126
, pp.
398
405
.
10.
Kucharski
,
S.
, and
Mróz
,
Z.
, 2001, “
Identification of Hardening Parameters of Metals From Spherical Indentation Tests
,”
J. Eng. Mater. Technol.
0094-4289,
123
, pp.
245
250
.
11.
Mesarovic
,
S.
, and
Fleck
,
N. A.
, 1999, “
Spherical Indentation of Elastic-Plastic Solids
,”
Proceedings: Mathematical, Physical & Engineering Sciences
,
455
, pp.
2707
2728
.
12.
Chudoba
,
T.
,
Schwwarzer
,
N.
, and
Richter
,
F.
, 1999, “
New Possibilities of Mechanical Surface Characterization With Special Indenters by Comparison of Experimental and Theoretical Results
,”
Thin Solid Films
0040-6090,
355–356
, pp.
284
289
.
13.
Wang
,
L.
,
Snidle
,
R. W.
, and
Gu
,
L.
, 2000, “
Rolling Contact Silicon Nitride Bearing Technology: A Review of Recent Research
,”
Wear
0043-1648,
246
, pp.
159
173
.
14.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
United Kingdom
.
15.
Tirupataiah
,
Y.
, and
Sundararajan
,
G.
, 1987, “
A Comprehensive Analysis of the Static Indentation Process
,”
Mater. Sci. Eng.
0025-5416,
91
, pp.
169
180
.
16.
Biwa
,
S.
, and
Storakers
,
B.
, 1995, “
An Analysis of Fully Plastic Brinell Indentation
,”
J. Mech. Phys. Solids
0022-5096,
43
(
8
), pp.
1303
1333
.
17.
NI Vision, 2005, National Instruments, Austin, TX.
18.
Nayebi
,
A.
,
El Abdi
,
R.
,
Bartier
,
O.
, and
Mauvoisin
,
G.
, 2002, “
New Procedure to Determine Steel Mechanical Properties From the Spherical Indentation Technique
,”
Mech. Mater.
0167-6636,
34
, pp.
243
254
.
19.
Hallquist
,
J. O.
, 1998,
LS-DYNA Theoretical Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
20.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
0013-7944,
21
(
1
), pp.
31
48
.
21.
Hamann
,
J. C.
,
Grolleau
,
V.
, and
Le Maître
,
F.
, 1996, “
Machinability Improvement of Steels at High Cutting Speeds—Study of Tool/Work Material Interaction
,”
CIRP Ann.
0007-8506,
45
(
1
), pp.
87
92
.
22.
Joyot
,
P.
,
Rakotomalala
,
R.
,
Pantalé
,
O.
,
Touratier
,
M.
, and
Hakem
,
N.
, 1998, “
A Numerical Study of Steady State Metal Cutting
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
212
, pp.
331
341
.
23.
Pantalé
,
O.
,
Rakotomalala
,
R.
,
Touratier
,
M.
, and
Hakem
,
N.
, 1996, “
A Three-Dimensional Numerical Model of Orthogonal and Oblique Metal Cutting Processes
,”
Proceedings of ESDA 1996
, pp.
199
203
.
24.
Technical Specifications—Styli and Accessories, Renishaw plc, United Kingdom.
25.
Kim
,
S. H.
,
Lee
,
B. W.
,
Choi
,
Y.
, and
Kwon
,
D.
, 2006, “
Quantitative Determination of Contact Depth During Spherical Indentation Of Metallic Materials—A Fem Study
,”
Mater. Sci. Eng., A
0921-5093,
415
, pp.
59
65
.
You do not currently have access to this content.