Elevated temperature data for powder metallurgy alloy René 95 generated in vacuum are presented to demonstrate that the life differences observed between surface and internally initiated failures are due to an environmental effect. The transition in behavior from a mode at low stress dominated by internal initiations to a surface dominated mode at high stress is quantitatively described in terms of both a weakest-link model and a local strain relationship. A fatigue failure mechanism is provided that explains that the natural selection of initiation site is based upon the concept that the site displaying the highest local cyclic plastic strain is the location where fatigue initiates.

1.
Cashman
,
G. T.
, “
A Statistical Methodology for the Preparation of a Competing Modes Fatigue Design Curves
,” Engineering Material and Technology, unpublished.
2.
Cashman
,
G. T.
, 2000, Ph.D. Dissertation, University of Dayton, Dayton, OH.
3.
Chang
,
D. R.
,
Krueger
,
D. D.
, and
Sprague
,
R. A.
, 1984, “
Superalloy Powder Processing, Properties and Turbine Disk Applications
,”
Superalloys 1984, Proceedings of the Fifth International Symposium on Superalloys
,
AIME
, pp.
245
273
.
4.
Chang
,
W. H.
,
Green
,
H. M.
, and
Sprague
,
R. A.
, 1982, “
Defect Analysis of P/M Superalloys
,”
Rapid Solidification Processing Principles and Technologies III, Proceedings of the Third Conference on Rapid Solidification Processing
,
Bureau of Standards
, pp.
500
509
.
5.
Harrison
,
G. P.
,
Tranter
,
P. H.
, and
Grabowski
,
L.
, 1993, “
Defects and Their Effects on the Integrity of Nickel Based Aeroengine Discs
,” AGARD Report 790, pp.
9.1
9.16
, April.
6.
Cox
,
D. R.
, 1970,
The Analysis of Binary Data
,
Methuen and Co.
, London, England, pp.
14
19
.
7.
Berens
,
A. P.
, 1988. “
NDE Reliability Analysis
,”
ASM Metals Handbook, 9th Edition: Nondestructive Evaluation and Quality Control
,
American Society for Metals
, Metals Park, OH, pp.
689
701
.
8.
Weibull
,
W.
, 1937, “
A Statistical Theory of the Strength of Materials
,” Ingenuir, Vetenskaps Akademie Handlung, p.
151
.
9.
Weibull
,
W.
, 1939, “
The Phenomenon of Rupture in Solids
,” Ingenuir Vetenskaps Akademie Handlung, p.
153
.
10.
Weibull
,
W.
, 1951, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
0021-8936,
19
, pp.
293
297
.
11.
Rosen
,
W. B.
, 1964, “
Tensile Failure of Fibrous Composites
,”
AIAA J.
0001-1452,
2
(
11
), pp.
1985
1991
.
12.
Barsom
,
J. M.
, and
McNicol
,
J. M.
, 1974, “
Effect of Stress Concentration on Fatigue-Crack Initiation in HY-130 Steel
,” American Society for Testing and Materials STP 559, pp.
183
204
.
13.
Slavik
,
D. C.
,
Dunyak
,
T.
,
Griffiths
,
J.
, and
Kurath
,
P.
, 2004, “
Crack Initiation Modeling in Ti‐6Al‐4V for Smooth and Notched Geometries
,” Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies, AFRL-ML-WP-TR-2005–4102, Materials and Manufacturing Directorate, Air Force Research Laboratory, Air Force Material Command, Wright-Patterson Air Force Base, OH
45433
7750
.
14.
Peralta
,
A.
,
Schenk
,
B.
,
Brehm
,
P.
,
Menon
,
M. N.
, and
Tucker
,
W. T.
, 1999, “
A New Probabilistic Approach for Accurate Fatigue Data Analysis of Ceramic Materials
,” International Gas Turbine and Aerospace Congress and Exhibition, Indianapolis, IN, June.
15.
Newman
,
J. C.
, and
Raju
,
I. S.
, 1983, “
Stress Intensity Factor Equations for Cracks in Three-Dimensional Bodies
,” American Society for Testing and Materials, STP 791, Philadelphia, PA, Volume
I
, pp.
1281
1296
.
16.
Shah
,
R. C.
, and
Kobayashi
,
A. S.
, 1973, “
Stress Intensity Factors for an Elliptical Crack Approaching the Surface of a Semi-infinite Solid
,”
Int. J. Fract.
0376-9429,
9
, pp.
123
146
.
17.
Trantina
,
G. G.
, and
deLorenzi
,
H. G.
, 1982., “
Elastic-Plastic Fracture Mechanics Analysis of Small Cracks
,”
Proceedings of the Army Symposium on Solid Mechanics Problems in Systems Design
,
Army Materials and Mechanics Research Center
, Watertown, MA, September, pp.
203
214
.
18.
Trantina
,
G. G.
,
deLorenzi
,
H. G.
, and
Wilkening
,
W. W.
, 1983, “
Three-Dimensional Elastic-Plastic Finite Element Analysis of Small Surface Cracks
,”
Eng. Fract. Mech.
0013-7944,
18
(
5
), pp.
925
938
.
19.
Hertzberg
,
R. W.
, 1989,
Elements of Fracture Mechanics
,
Wiley
, New York, pp.
312
321
.
20.
Broek
,
D.
, 1978,
Elementary Engineering Fracture Mechanics
,
Sijthoff and Noordhoff
, Amsterdam, pp.
131
135
.
21.
Hooke
,
J.
, and
Jeeves
,
T. A.
, 1961, “
Direct Search Solution of Numerical and Statistical Problems
,”
J. Assoc. Comput. Mach.
0004-5411,
8
, pp.
212
229
.
22.
Kuester
,
J. L.
, and
Mize
,
J. H.
, 1973,
Optimization Techniques with FORTRAN
,
McGraw-Hill
, New York, pp.
309
319
.
23.
Mughragi
,
H.
, 1992, “
Introduction to the Viewpoint Set On: Surface Effects in Cyclic Deformation and Fatigue
,”
Scr. Metall. Mater.
0956-716X,
26
(
10
), pp.
1492
1504
.
24.
James
,
M. R.
, and
Morris
,
W. L.
, “
The Role of Microplastic Deformation in Fatigue Crack Initiation
,” Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, ASTM STP 811, American Society for Testing and Materials, pp.
46
70
.
25.
Neumann
,
P.
, 1992, “
The Effect of Surface Related Grain Boundary Stresses on Fatigue
,”
Scr. Metall. Mater.
0956-716X,
26
(
10
), pp.
1535
1540
.
26.
Xie
,
X.
,
Dong
,
J.
,
Zhang
,
L.
, and
Li
,
X.
, 1999,
Annual Report on the Project of Powder Metal Inclusion Fatigue Crack Nucleation to GE Aircraft Engines
, High Temperature Materials Research Laboratories, University of Science and Technology, Beijing 100083, China, December 12.
27.
Vanstone
,
R. H.
, and
Henry
,
M. F.
, 1982, “
Processing Effects on Microstructure and Fatigue Properties of Nickel-base Superalloys
,” Report No. NADC-80124-60, Naval Air Development Center, Contract No. N62269–80–C-0708, January.
28.
Harrison
,
G. P.
,
Tranter
,
P. H.
, and
Grabowski
,
L.
, 1993, “
Defects and Their Effects on the Integrity of Nickel Based Aeroengine Discs
,” AGARD Report 790, pp.
9.1
9.16
, April.
29.
Huron
,
E. S.
, and
Roth
,
P. G.
, “
The Influence of Inclusions on Low Cycle Fatigue Life In a P/M Nickel-Base Disk Superalloy
,”
Superalloys 1996, Proceedings of the Seventh International Symposium on Superalloys
, TMS High Temperature Alloys Committee, ASM International and the American Society of Mechanical Engineers, pp.
359
368
, September.
30.
Creager
,
M.
, 1966, “
The Elastic Stress-Field Near the Tip of a Blunt Crack
,” Master of Science Thesis, Lehigh University, Bethlehem, PA.
31.
Dowling
,
N.
, 1999,
Mechanical Behavior of Materials
, 2nd ed.,
Prentice-Hall
, Upper Saddle River, NJ, pp.
422
423
.
32.
Barsom
,
J. M.
, and
Rolfe
,
S. T.
, 1977, “
Fracture and Fatigue Control in Structures
,
Prentice-Hall
, Englewood Cliffs, NJ, p.
228
.
33.
Floreen
,
S.
, and
Kane
,
R. H.
, 1979, “
An Investigation of the Creep-Fatigue-Environmental Interaction in a Ni-Base Superalloy
,” Inco Research and Development Center, Technical Paper 1020–T-OP, Suffern, NY, August.
34.
Bain
,
K. R.
, and
Pelloux
,
R. M.
, 1984, “
Effect of Environment on Creep Crack Growth in PM/HIP René 95
,”
Metall. Trans. A
0360-2133,
15A
, pp.
381
388
.
You do not currently have access to this content.