Deformation of Ti-6Al-4V alloy in the β phase field is generally considered to be trivial since the material is highly workable at these temperatures and does not normally pose problems during processing. In view of this, studies on the hot deformation behavior of β are scanty compared to those on the α−β deformation. This paper is focussed on understanding the β deformation characteristics in Ti-6Al-4V with a view to examine whether such studies help in optimizing the process design and achieving microstructural control. The emphasis has been on the two industrial grades, viz. commercial purity (CP) versus extra-low interstitial (ELI), and also on the effect of starting microstructure (transformed β versus equiaxed α+β). The stress-strain curves obtained in compression exhibited steady-state behavior at strain rates lower than 1 s−1 and oscillatory/softening behavior at higher strain rates. Kinetic analysis of the flow stress data obtained at different temperatures and strain rates has shown that the stress exponent is about 3.6-3.8 and the apparent activation energy is in the range 150-287 kJ/mole, which is comparable to that of self-diffusion in β phase (150 kJ/mol). Dynamic recrystallization (DRX) of β is identified as the microstructural mechanism in all the cases except in ELI grade with transformed β starting structure. The prior β grain size in the DRX region exhibits a good correlation with the Zener-Hollomon parameter. In case of ELI grade, a mechanism of large grained superplasticity involving sliding of prior colony boundaries has been identified. However, deformation close to the transus in ELI grade causes nucleation of voids which may grow during soaking at the deformation temperature under the influence of tensile residual stress. The results clearly show that a study of β deformation mechanisms holds the key during hot working of Ti-6-4. More importantly, the processing schedule used for CP grade Ti-6-4 should not be used for ELI grade to achieve microstructural control and avoid defects.

1.
Boyer, R., Welsch, G., and Collings, E. W., 1994, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, pp. 594–598.
2.
Brun
,
M.
,
Anoshkin
,
N.
, and
Shakhanova
,
G.
,
1998
, “
Physical processes and regimes of thermomechanical processing controlling development of regulated structure in the α+β titanium alloys
,”
Mater. Sci. Eng., A
,
243
, pp.
77
81
.
3.
Prasad
,
Y. V. R. K.
, and
Seshacharyulu
,
T.
,
1998
, “
Modelling of hot deformation for microstructural control
,”
Int. Mater. Rev.
,
43
, pp.
243
258
.
4.
Sheppard
,
T.
, and
Norley
,
J.
,
1988
, “
Deformation characteristics of Ti-6Al-4V
,”
Mater. Sci. Technol.
,
4
, pp.
903
908
.
5.
Wu
,
K. C.
, and
Lowrie
,
R. E.
,
1972
, “
Optimization of Thermo-mechanical deformation parameters for Ti-6Al-4V
,”
Metallurgical Engineering Quarterly
,
12
, pp.
24
29
.
6.
Grant, N. J., Ioup, W., and Kane, R. H., 1970, “The hot plasticity of Ti-6Al-4V,” The Science, Technology and Application of Titanium, pp. 607–613, Pergamon Press, London, Jaffe, R. I. and Promisel, N. E. eds.
7.
Prasad
,
Y. V. R. K.
,
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
, and
Frazier
,
W. G.
,
2000
, “
Hot deformation mechanisms in Ti-6Al-4V with transformed β starting microstructure
,”
Mater. Sci. Technol.
,
16
, pp.
1029
1036
.
8.
Prasad
,
Y. V. R. K.
,
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
,
Morgan
,
J. T.
, and
Malas
,
J. C.
,
2000
, “
Titanium alloy processing
,”
Advanced Materials and Processes
,
157
, No.
6
, pp.
85
89
.
9.
Prasad
,
Y. V. R. K.
,
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
, and
Frazier
,
W. G.
,
2000
, “
Microstructural modeling and process control during hot working of commercial Ti-6Al-4V: Response of lamellar and equiaxed starting microstructures
,”
Mater. Manuf. Processes
,
15
, No.
4
, pp.
581
604
.
10.
Prasad
,
Y. V. R. K.
,
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
, and
Frazier
,
W. G.
,
2000
, “
Effect of preform microstructure on the hot working mechanisms in ELI grade Ti-6Al-4V: Transformed β vs. equiaxed (α+β)
,”
Mater. Sci. Technol.
,
16
, No.
5
, pp.
511
516
.
11.
Prasad
,
Y. V. R. K.
,
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
, and
Frazier
,
W. G.
,
2000
, “
Effect of prior β grain size on the hot deformation behavior of Ti-6Al-4V: Coarse vs. coarser
,”
J. Mater. Eng. Perform.
,
9
, No.
2
, pp.
153
160
.
12.
Prasad
,
Y. V. R. K.
,
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
, and
Frazier
,
W. G.
,
2001
, “
Influence of oxygen content on the forging response of equiaxed α+β preform of Ti-6Al-4V: Commercial vs. ELI grade
,”
J. Mater. Process. Technol.
,
108
, No.
3
, pp.
320
327
.
13.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Morgan
,
J. T.
,
Malas
,
J. C.
, and
Prasad
,
Y. V. R. K.
,
2000
, “
Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V
,”
Mater. Sci. Eng., A
,
279
, pp.
289
299
.
14.
Seshacharyulu, T., Medeiros, S. C., Frazier, W. G., and Prasad, Y. V. R. K., 2000, “Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure,” Mater. Sci. Eng. A, in print.
15.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
, and
Prasad
,
Y. V. R. K.
,
2000
, “
Mechanisms of hot working in extra-low interstitial grade Ti-6Al-4V with equiaxed (α+β) starting microstructure
,”
Zeitschrift fur Metallkunde
,
91
, No.
9
, pp.
775
780
.
16.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
, and
Prasad
,
Y. V. R. K.
,
2000
, “
Hot working of commercial Ti-6Al-4V with an equiaxed α−β microstructure; Materials modeling considerations
,”
Mater. Sci. Eng., A
,
284
, pp.
184
194
.
17.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
, and
Prasad
,
Y. V. R. K.
,
2001
, “
Strain induced porosity during cogging of extra-low interstitial (ELI) grade Ti-6Al-4V
,”
J. Mater. Eng. Perform.
,
10
, No.
2
, pp.
125
130
.
18.
Seshacharyulu
,
T.
,
Medeiros
,
S. C.
,
Frazier
,
W. G.
, and
Prasad
,
Y. V. R. K.
,
2001
, “
Flow instabilities during supratransus working of Ti-6Al-4V
,”
Mater. Lett.
,
47
, No.
3
, pp.
133
139
.
19.
Collings, E. W., 1984, Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH.
20.
Frost, H. J., and Ashby, M. F., 1982, Deformation Mechanism Maps, Pergamon Press, London, p. 51.
21.
Dyment
,
F.
, and
Libanati
,
C. M.
,
1968
, “
Self-diffusion of Ti, Zr, and Hf in their HCP phases, and diffusion of Nb95 in HCP Zr
,”
J. Mater. Sci.
,
3
, pp.
349
359
.
22.
Kidson, G. V., 1965, “The mechanism of diffusion in beta zirconium, beta titanium and gamma uranium,” Diffusion in Body-Centered Cubic Metals, ASM, Metals Park, OH, pp. 329–347, J. A. Wheeler and F. R. Winslow, eds.
23.
Le Claire, A. D., 1965, “Application of diffusion theory to the body-centered cubic structures,” Diffusion in Body-Centered Cubic Metals, J. A. Wheeler and F. R. Winslow, eds., ASM, Metals Park, OH, pp. 3–25.
24.
Sastry
,
S. M. L.
,
Lderich
,
R. J.
,
Mackay
,
T. L.
, and
Kerr
,
W. R.
,
1983
, “
Superplastic forming characterization of titanium alloys
,”
J. Met.
,
35
, No.
1
, pp.
48
53
.
25.
Cope
,
M. T.
, and
Ridley
,
N.
,
1986
, “
Superplastic deformation characteristics of microduplex Ti-6Al-4V alloy
,”
Mater. Sci. Technol.
,
2
, pp.
140
145
.
26.
Jonas
,
J. J.
,
Sellars
,
C. M.
, and
Tegart
,
W. J. McG.
,
1969
,
Metallurgical Reviews
,
14
, pp.
1
24
.
27.
de Reca
,
N. E. W.
, and
Libanati
,
C. M.
,
1968
, “
Self-diffusion in β-titanium and β-hafnium
,”
Acta Metall.
,
16
, pp.
1297
1305
.
28.
Nieh, T. G., Wadsworth, J., and Sherby, O. D., 1997, Superplasticity in metals and ceramics, Cambridge University Press, Cambridge, UK, pp. 219–223.
You do not currently have access to this content.