Welded high-temperature power plant components can experience a greater risk of failure by creep during service, when compared to similar as-wrought components. The heat-affected zone (HAZ) of alloy steels is usually the region of a weldment exhibiting poor mechanical properties. The arc welding of an ASTM A470, Class 8-rotor steel in this study identified the intercritical heat affected zone (ICHAZ) as the weakest region in terms of creep rupture life. The type of welding procedure significantly affects this region, but most important are the welding parameters utilized. Because of the microstructural heterogeneity of the HAZ and sensitivity of these microstructures to changes when exposed to elevated temperatures, their performance at later times is difficult to predict. Extrapolation techniques are limited in value for predicting service lives of homogeneous materials, because these do not incorporate the microstructure changes of the materials during high temperature operation. They are even less useful for predicting the operating lives of weldments. This paper considers the creep performance and structure stability of the ICHAZ of 12 percent Cr and 214-1Mo vanadium modified weldments produced on a retired CrMoV rotor steel. [S0094-4289(00)00303-0]

1.
Heger
,
J. J.
,
Hodge
,
J. M.
, and
Marshall
,
P. W.
,
1954
,
Proc. ASTM
,
54
, pp.
1003
1027
.
2.
Kadoya
,
Y.
,
Kidai
,
T.
,
Tsuji
,
I.
,
Matsuo
,
A.
,
Tanaka
,
Y.
,
Asuma
,
T.
, and
Ikeda
,
Y.
,
1993
, “
Effects of Cr, Mo, W, Mn and Ni on Toughness of 2.25Cr-Mo-V Rotor Steel
,”
J. Iron Steel Inst. Jpn.
,
79
, No.
8
, pp.
980
995
.
3.
Viswanathan, R., and Gehl, S., 1992, “Temper Embrittlement of Rotor Steels,” Proc. of the Robert I. Jaffee Memorial Symposium on Clean Materials Technology, ASM Materials week, Chicago, IL, Nov. 2–5, pp. 59–67.
4.
Jin
,
Yu
, and
McMahon
,
C. J.
,
1980
, “
The Effects of Composition and Carbide Precipitation on Temper Embrittlement of 2.25Cr-1Mo Steel: Part 1 Effect of P and Sn
,”
Metall. Trans. A
,
11A
, No.
2
, pp.
277
289
.
5.
Cheruvu
,
N. S.
, and
Seth
,
B. B.
,
1989
, “
The Influences of Impurity Content, Tensile Strength and Grain Size on In-service Temper Embrittlement of CrMoV Steels
,”
Metall. Trans. A
,
20A
, No.
11
, pp.
2345
2354
.
6.
Militzer
,
M.
, and
Wieting
,
J.
,
1989
, “
Segregation Mechanisms of Temper Embrittlement
,”
Acta Metall.
,
37
, No.
10
, pp.
2585
2593
.
7.
Inoue
,
T.
,
Sakane
,
M.
,
Fukuda
,
Y.
,
Igari
,
T.
,
Miyahara
,
M.
, and
Okazaki
,
M.
,
1994
, “
Fatigue-Creep Life Prediction for a Notched Specimen of 2.25Cr-1Mo Steel at 600°C
,”
Nucl. Eng. Des.
,
150
, pp.
141
149
.
8.
Lloyd
,
G. J.
, and
Wareing
,
J.
,
1981
, “
Life-Prediction Methods for Combined Creep-Fatigue Endurance
,”
Met. Technol. (London)
,
8
, No.
8
, pp.
297
305
.
9.
Miller
,
M. P.
,
McDowell
,
D. L.
, and
Oehmke
,
R. L. T.
,
1992
, “
A Creep-Fatigue-Oxidation Microcrack Propagation Model for Thermomechanical Fatigue
,”
Trans. ASME
,
114
, pp.
282
288
.
10.
Pope, D. P., 1992, “Embrittlement of Ferrous Alloys Under Creep Conditions,” Treatise on Materials Science and Technology, Academic, Vol. 25, pp. 125–153.
11.
Cane
,
B. J.
,
1981
, “
Creep Fracture of Dispersion Strengthened Low Alloy Ferritic Steels
,”
Acta Metall.
,
29
, pp.
1581
1591
.
12.
Jones
,
M. H.
,
Newman
,
D. P.
,
Sachs
,
G.
, and
Brown
,
W. F.
, Jr.
,
1955
,
Trans. ASM
,
47
, pp.
926
956
.
13.
Cane, B. J., and Townsend, R. D., 1983, “Prediction of Remaining Life in Low-Alloy Steels” Flow and Fracture at Elevated Temperatures, Rishi Raj, ed., American Society of Metals, Metals Park, Ohio, pp. 279–316.
14.
Kojima
,
T.
,
Hayashi
,
K.
, and
Kajita
,
Y.
,
1995
, “
HAZ Softening and Creep Rupture Strength of High Chromium Ferritic Steel Weldment
,”
ISIJ Int.
,
35
, No.
10
, pp.
1284
1290
.
15.
Cane, B. J., and Manning, M. I., 1981, Central Electricity Generating Board Memo LM/MATS/407, CERL, Kevin Avenue, Leatherhead, UK.
16.
Cane
,
B. J.
, and
Middleton
,
C. J.
,
1981
, “
Intergranular Creep-Cavity Formation in Low-Alloy Bainstic Steel
,”
Metal Sci.
,
15
, pp.
295
301
.
17.
Hippsley
,
C. A.
,
1987
, “
Sulphur Segregation and High Temperature Brittle Intergranular Fracture in Alloy Steels
,”
Acta Metall.
,
35
, No.
10
, pp.
2399
2416
.
18.
Kadoya
,
Y.
, and
Goto
,
T.
,
1992
, “
Metallurgical Factors Affecting Creep Cavitation Behavior and Rupture Ductility of Cr-Mo-V Steel Forging
,”
J. ISIJ
,
78
, No.
10
, pp.
1601
1608
.
19.
Oh
,
Y. K.
, and
Indacochea
,
J. E.
,
1993
, “
HAZ Stability of 1.0Cr-1.0Mo-0.25V Bainitic HP Rotor Steel
,”
Sudura
,
3
, No.
3
, pp.
1
6
.
20.
Wojnowski, D., Oh, Y. K., and Indacochea, J. E., 2000, “Metallurgical Assessment of the Softened HAZ Region During Multipass Welding,” ASME J. Manuf. Sci. Eng., Nov., in press.
21.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
74
, pp.
765
771
.
22.
Manson, S. S., and Haferd, A. M., 1953, “A Linear Time-Temperature Relation for Extrapolation of Creep and Stress Rupture Data,” NACA, TN2890, p. 1890.
23.
Manson
,
S. S.
, and
Brown
,
W. F.
,
1953
, “
Time-temperature Stress Relations for Correlation and Extrapolation of Stress Rupture Data
,”
Proc. ASTM
,
53
, pp.
683
719
.
24.
Orr
,
R. L.
,
Sherby
,
O. D.
, and
Dorn
,
J. E.
,
1954
, “
Correlations of Rupture Data for Metals at Elevated Temperatures
,”
Trans. ASME
,
46
, pp.
113
118
.
25.
Monkman
,
F. C.
, and
Grant
,
N. J.
,
1956
, “
An Empirical Relationship Between Rupture Life and Minimum Creep Rate in Creep Rupture Tests
,”
Proc. ASTM
,
56
, pp.
593
605
.
26.
Evans
,
R. W.
,
Parker
,
J. D.
, and
Wilshire
,
B.
,
1992
, “
The θ Projection Concept—A Model Based Approach to Design and Life Extension of Engineering Plant
,”
Int. J. Pressure Vessels Piping
,
50
, pp.
147
160
.
27.
Wilshire
,
B.
, and
Evans
,
R. W.
,
1994
, “
Acquisition and Analysis of Creep Data
,”
J. Strain Anal.
,
29
, No.
3
, pp.
159
165
.
28.
Prager, M., 1994, “Development of the MPC Omega Method for Life Assessment in the Creep Range,” Service Experience and Reliability Improvement: Nuclear, Fossil and Petrochemical Plants, ASME Pressure Vessel and Piping Conference, 288, pp 401–421.
29.
Indacochea
,
J. E.
, and
Seshadri
,
R.
,
1997
, “
An Analysis of Creep Damage in a Welded Low Alloy Steel Rotor
,”
ASME J. Materials
,
A234–236
, pp.
555
558
.
30.
Earthman, J. C., and Mohamed, F. A., eds. 1997, “Creep Fracture of Engineering Materials and Structures,” The Metallurgical and Materials Society, Warrendale, PA.
You do not currently have access to this content.